
Michael Cole Innovations

Innovation Project Report 2008

An Investigation into
Animation Blending

By Michael Cole
BACVA3

1

Michael Cole Innovations

Abstract

The art of animation blending has been used in games for many
years, from the original ‘Quake to modern day PS3 games. It is the
art of seamlessly merging from one animation to another to imitate
movements in the real world. Unlike traditional animation,
animation in games is not a linear process, moving from frame to
frame, but is composed of lots, some times as many as 150,
separate animations. The main objective of this project is to
investigate existing methods of animation blending in real time and
to use these techniques to solve the problem of creating my own
blending software. The secondary objectives are to research
methods of exporting animation files from Autodesk Maya 8.5 into
a format that can be loaded into a C++ program. The format will
have to deal with Joint Hierarchies, Geometry, and Animation for
use in animation blending.

2

Michael Cole Innovations

Contents

 1.Introduction
1.1 Animation Blending Techniques

1.1.1 Point to Point Blending
1.1.2 Joint/Skeleton Hierarchy controlled Geometry

1.2 Mathematical Techniques used in Animation Blending
1.2.1 3D Euler Rotations
1.2.2 Quaternions
1.2.3 Interpolation

2. Detailed Outline of How Animation Blending is Achieved
2.1. Weighting and Blending

2.1.1 Animation Types
2.1.2 Systems Using Joint Hierarchy Blending

2.2 Choices for the Prototype
2.2.1 Exporting from Maya
2.2.2 The Prototype

3. Construction of the prototype
3.1 How well was it achieved

4. Conclusion

3

Michael Cole Innovations

1. Introduction

The first section will investigate how animation blending has been
achieved in modern computer games; explaining in some detail the
differences in techniques and analysing each methods advantages
and disadvantages.

The second section will go into more detail of how exactly
animation blending is achieved using a weighted joint hierarchy
system and inverse kinematics, as well as discussing some
mathematical techniques used in animation. I will then go into
which techniques I have chosen for my prototype and why, and
discuss its initial design.

The third section critically analyses my prototype, with particular
emphasis on discussing problems in production.

The final section deals with my conclusion, discussing what worked
well and what would be improved in future production.

1.1 Animation Blending Techniques

There are two main animation techniques that can be used to
define animation in computer graphics. One technique is simply
describing 3D points for each frame. The other uses some form of
rotation and translation matrix based around a joint skeleton that
would in turn move these 3D points.

1.1.1 Point to Point Blending

The original ‘Quake’ for example used the first technique.
The Quake Engine was released in 1996 by id Software and
featured this first example of 3D real time rendering, and boasted
3D character animation and blending. This method was little
different to a flip book animation. Each 3D position was predefined
for each point on the character mesh for each frame in the way of
successive object models. Quick succession of these models gave
the illusion of movement. Each model in effect would be like a
panel in a hand drawn animation.
(Quake details from http://en.wikipedia.org/wiki/Quake_engine)

Blending animations together relied on interpolation, which is
discussed later. Over time one set of animation models would use
interpolation to morph into another by changing the interpolation
value from the start animation to the end.

There are two main benefits of this technique. Firstly it is easy to
implement, as only a simple loading sequence is needed to play an
animation and a reasonably straightforward interpolation to blend.

4

Michael Cole Innovations

Secondly the animator has complete control over each individual
point on the character mesh, meaning that while an animation is
playing there will be no strange skin deformation.

However there are major drawbacks. The blending would not look
very realistic. Linear interpolation of points would deform the mesh
into strange shapes before finishing at the end position. Other
forms of interpolation that may solve this are difficult if not
impossible with a point to point system. You could of course simply
cut to each animation. This would stop any undesired morphing but
would result in a noticeable sudden jump from one position to
another. Also, as only one animation can be played at a time a fully
animated character would need a lot of animation files, for example
you would need separate animations for running, running with a
weapon, running up a hill, down a hill and so on.

When processor power was a big limiting factor in computer
graphics point to point blending was a viable option. This technique
however is now widely considered obsolete.

1.1.2 Joint/Skeleton Hierarchy controlled Geometry

More modern games use the second technique mentioned earlier.
Rotation Matrices or Quaternions are used to control a Joint
Hierarchy structure that in turn controls the 3D points of a
geometry mesh. The Joint movements are controlled by an
animation blending system. This system can call on a variety of
stored animation sequences to create the final output animation.

A Joint Hierarchy or Skeleton Hierarchy is supposed to represent a
simplistic skeleton, mostly for a humanoid character. Each Joint can
have multiple child Joints, each of which in turn can have further
children. Child Joints inherit the translations, rotations, and in
some cases scaling, values of there parents (see figure 1.1).

figure 1.1 Example of Joint Chain inheritance of Rotations. The first image shows
a four joint chain. The second shows how all the joints inherit the rotation from
the highest joint in the chain. The third again shows how every joint lower in a
chain inherits from the parent.

5

Michael Cole Innovations

The Joints form a Hierarchy Tree with each node inheriting all the
values from the nodes above it. All the nodes in the tree eventually
link back to the Root Node which is the centre of the character

figure 1.2 Example of Hierarchy Tree starting from a Root Node with two child
nodes, the Back and the Pelvis etc.

Each vertex on a geometry mesh has a weighting to one or more
joints. This means that when a joint rotates the vertex points with a
weighting to that joint will move with it.

figure 1.3 Skeleton Hierarchy with Geometry mesh Skin. Character taken from
Master Class Project, Screen shots from Maya. Joint Hierarchy used in
prototype.

Each Joint can have animation applied to it in the form of a rotation
or a translation, although generally only the root joint would have a
translation. As the animations are not directly connected to the
geometry it is possible using this technique to produce real

6

Michael Cole Innovations

animation blending. Multiple animations can be blended into a
single rotation matrix that can then be applied to the joint
hierarchy and, in turn, to the geometry.

Of the two techniques the Joint Hierarchy approach allows for
much smoother animation blending and requires much less
memory to store the information, i.e. one rotation value per frame
per Joint rather than new coordinates for every vertex point per
frame. It has one key aspect that the point to point system does
not. When blending, the joint hierarchy system has an actual point
in space to rotate around, whereas a point to point system does
not. This point in space means that rotation values from two
separate animations can be interpolated and applied to these joints
rather than taking two points in space and simple interpolating
between them.

1.2 Mathematical Techniques used in Animation
Blending

A Joint Hierarchy System requires 3D rotation and translation to
perform an animation. More specifically it requires transformation
around arbitrary axes as each Joint would have its own orientation.
There exist several different techniques for describing rotations
and transformations in 3D space.

1.2.1 3D Euler Rotations

In 2D rotation a vertex is rotated about a point, be it the origin or
some other arbitrary position. In 3D rotations it is rotated around
an axis. Again this could be one of the orthogonal axes (x, y and z)
or some arbitrary axis. Rotating around the z axis, or rotating on a
plane parallel to the XY plane could be described algebraically as:

x’ = x cos(ß) – y sin(ß)
y’ = x sin(ß) + y cos(ß)
z’ = z

Altering these equations can provide methods of rotating around
the x and the y axis.

To rotate around an arbitrary axis as is required in animation it
takes the combination of 5 matrices to calculate a new position.
Firstly the arbitrary axis must be rotated until it is in parallel to
one of the orthogonal axis. The axis must then be moved back to
the origin with a negative translation matrix. The desired rotation
would then be applied.

7

Michael Cole Innovations

To complete the transformation the point must be moved back to its
original orientation. This is done by using the reverse of the
previous two matrices; translating the axis back to its parallel
position and the inverse rotation matrix to rotate back to the
original orientation of the joint.

[-translate] [-jointOrient] [rotate] [+jointOrient] [+translate]

Translations are very simple to calculate.

x’ = x + tx

y’ = y + ty

z’ = z + tz

1.2.2 Quaternions

A quaternion works differently to Euler Matrices. It is associated
with vectors rather than individual points as Euler Rotations are. A
Quaternion is based on a quadruple of real numbers and is defined
as

Q = [s, v]

Where s is a scalar and v is a 3D vector. With v in its component
form we have

Q = [s + xi + yj + zk]

i j k being vector complex numbers.

Quaternions can be used to rotate points about an arbitrary axis in
a similar way to Euler rotations in that it takes one transforming
quaternion and then the negative of that that transform to
complete the rotation.

Any point such as P(x, y, z) can be defined in quaternion form as

P = [0 + xi +yj + zk]
and any axis can be defined as a unit vector

 u = [xui + yuj + zuk].

The transform quaternion is defined as

q = [cos(θ/2), sin(θ/2)u]

where θ represents the desired rotation.

8

Michael Cole Innovations

q-1 is the inverse of q. The formula would therefore be P’ = q P q-1.
This would rotate any point around an arbitrary axis defined by u
by the angle θ.

Quaternions have several advantages over Euler Rotations. Firstly
to perform the same calculation Euler Rotations require 5 matrices
while Quaternions require only require 3. This is more efficient and
therefore quicker to calculate.

Secondly, interpolation, which will be covered in a later section, is
far easier with Quaternions than with Euler Angles. Interpolation of
rotations is the key to realistic animation blending.

1.2.3 Interpolation

Linear Interpolation

This is a simple mathematical technique that takes an initial value,
an end value and position between the two.

The general formula is: n = n1 + t(n2 - n1)

‘n1’ is the initial value, and ‘n2’ is the end value. The value ‘t’
controls the interpolated value, and is some where between 0 and
1, i.e. when t = 0, n = n1, and when t = 1, n = n2. All values of t
between 0 and 1 will give an interpolated value.

It is this technique that is used in Point to Point blending. It works
by creating a linear line in 3D space between two positions and
interpolates along this line. As discussed before Point to Point
blending is obsolete, however it can be useful to Joint Hierarchy
blending in a number of ways. For example, Maya exports 24/25
frames per second. A programmes frame rate would rarely run at
exactly the correct speed, so linear interpolation can be used with a
millisecond counter to calculate a value between frames.

Interpolation of Quaternions

Quaternions are based on vectors. It is not possible to simple use
the same interpolation technique as discussed previously on each
component. It would still take into account the orientation of the
joint but would ignore the change in magnitude. To successfully
interpolate between two vectors while maintaining both magnitude
and orientation we can use the formula

V = sin((1- t)θ) V1 + sin(t θ) V2

sin(θ) sin(θ)

where θ is the angle between the two vectors.

9

Michael Cole Innovations

The same formula can be used for quaternions where θ is the angle
between the two. If θ is not known is can be calculated using the
4D dot product.

This would produce a vertex that would interpolate magnitude as
well as direction.

(Mathematical Equations and details taken from Essential Mathematics for
Computer Graphics Fast by John Vince)

10

Michael Cole Innovations

2. Detailed Outline of How Animation
Blending is Achieved

This section will go into more detail on how animation blending is
achieved, introducing the idea of joint weights and different types
of blending. It will then go into some detail on choices for the
prototype.

2.1. Weighting and Blending

A blending of animations can be achieved by simply interpolating
quaternion rotations from two or more animations. However the
blender is not able to know how important certain animations are
and such would blend each animation equally. If you wished to
combine a walk cycle with an animation of some one holding a gun
it would result in some partly standing still and partly walking
animation which is not desired. To combat this, the idea of Joint
weightings is introduced.

Taking the previous example, in a walk cycle the important aspects
of the walk are the legs, while the arm movement is only secondary
and less important. In the ‘holding a gun’ animation however the
important part of the animation is the arms and the legs are
secondary. Weights are signs of importance to the blending system
within an animation. If you introduce the idea of weighting in your
interpolation between the previous two animations you would have
the legs walking while the arms carry a gun.

The weighting system is not confined to separating the arms and
legs. It can be used to prioritise any part of the skeleton, such as an
arm waving or a kicking action. These weights are similar to that
used in Maya when skinning a mesh to a joint hierarchy. Some
joints have a large influence on the movement of the geometry
while others have no influence at all.

To combine quaternion interpolation with weights we can use the
following formula.

Q = (Q1, Q2, I(W1(t), W2(t))

where Q1 and Q2 and the two Quaternions to interpolate and W1
and W2 are the weighting on each Quaternion.

With this calculation it now takes into account how important each
joint is to the animation. For example if a leg joint has a weighting
of 1 in a run animation and 0 in a waving animation then blender
will output the rotation fully from the running joint and not at all
from the waving. If however the leg joints had a weighting of 0.5 in

11

Michael Cole Innovations

both animations then the blender would output a rotation
interpolated exactly between the two.

If two animations had a weighting of 1 on the legs the blender
would output a value midway between the two. Both input rotations
would have an equal effect on the output. However, an animation
with a weighting of 1 on the legs means that the leg animation
should not be altered. Therefore if you combine two animations of
weighting 1 you may get a strange result, such as a man running
and kicking at the same time. To prevent this from occurring it
would be down to the blender to not attempt to blend two such
animations together.

Animations weighting, while not available in Maya, is available in
other 3D animation packages such as 'Granny' which is designed
for interactive 3D applications. It has a built in run time animator
among other things, which is equipped to handle animation
playback, modification, blending and inverse kinematics. This
software could be used to reline animations and add joint
weightings.

(Granny Website http://www.radgametools.com/granny.html)

2.1.1 Animation Types

There are several different types of animation blending that can be
used. The two main types are transition blending and animation
blending.

Transition blending
This is the type of blending that would be used to move from a walk
to a run. The start animation would be the walk cycle. Then over a
period of a few frames the interpolation between the walk rotations
and the run rotations would slowly shift the animation from one to
the other resulting in a continuous loop of the run animation.

Animation blending
This merges two or more animations together completely. This is
where weightings come in useful. It is possible to merge a run with
a wave and play both animations at the same time. Because of the
weighting system the waving animation does not affect the legs and
vice versa. It also does not matter if the waving animation is longer
that the run animation as the animation is being calculated on a
frame by frame basis. Once the end of the running animation is
reached it will loop back round to the beginning.

The final technique used in blending is a direct Inverse Kinematic
control of a joint. This means that a joint is controlled directly, and
not by an input from an animation. An example of how this could be

12

Michael Cole Innovations

used would be a character 'look at'. The head of the character
would rotate separately from the animation that is playing. If this
procedural rotation is fed through the animation blender it would
result in a smooth unnoticeable blend.

(details of animation blending found at
http://www.gamasutra.com/features/20030704/edsall_02.shtml)

2.1.2 Systems Using Joint Hierarchy Blending

As stated before most modern day computer games use some form
of skeleton hierarchy blending system. The newer the game the
more complex the system. The MechWarrior games were a series in
the mid ninety's that used a skeleton hierarchy. It uses a mixture of
transition blending, animation blending and Inverse Kinematics to
control the movements of the character.

Over View of the MechWarrior System

It is composed of two main systems, the animation playback system
and the blending system. The animation system handles the actual
displaying to screen of the character while the the blending system
deals with outputting of blended animation based on a database of
animations. Once calculated the blender would output display
instructions to the animation playback system.

Quaternions are used to calculate rotations of joints and in the
interpolation of animations. The blender is comprised of a tree of
blender nodes linking it to a variety of functions such as a
transition node, which stores a start and and end animation. The
blender calculates the weightings for all animations involved and
flattens and normalizes them ready for use in the animation
playback.

Image taken from the original MechWarrior.

This system uses most of what has been discussed. The blender has
been designed to portray the weight of the characters which are

13

Michael Cole Innovations

supposed to be 10 metres tall, and does so successfully. The
Animation is clunky a heavy. It also uses procedural Inverse
kinematics successfully as 'look ats' and gun sights. However, the
system uses more than 150 animations per character. While
calculations for one character are not too tasking the game often
involves many MechWarrior characters at the same time. This can
result in quickly escalating processor demands which can slow
game play down on slower machines. A simpler blending system
would allow for more overhead.

(MechWarrior system spec. from
http://www.gamasutra.com/features/20030704/edsall_01.shtml)

2.2 Choices for the Prototype

2.2.1 Exporting from Maya

Before any animation blending can take place it is necessary to
export the animation from Maya into a format that can be loaded
into the prototype software. This file format will be required to
contain information on Joint position and Orientation, Geometry
and Animation values.

OBJ. exporter
This file format exports geometry from Maya into a format that can
be easily loaded into a C++ program. However it does not export
any kind of Joint or Animation data. I briefly mention this file
format because it could be used in conjunction with another
method to export the required data.

My own file format
It is possible to write a script within Maya that would take values
from the file and write them to a document. This format would have
been useful as it would allow you to specify exactly which data to
include in the file, such as rotations, skin weights etc, and would
allow the creation of layout that would optimize loading sequence
into a C++ program.

There are many draw backs to this however. Mainly it would take a
long time to design a file format that could deal with all the
different possibilities that Maya files could contain and present
them in a way that could be easily loaded into C++. An Obj file
could be used to cut down on some of the work, although this
would creating problems when linking the skinning values to the
mesh. Even with a successful format it could only be used by a
C++ program with a loader written especially for it. Meaning the
animation files and blending program could never be used in
industry or with any existing software.

14

Michael Cole Innovations

There is an existing file format that was designed by Sony to be a
universal file exporter that could be used to transfer files from
different animation packages such as Maya and 3D Studio, as well
as to be used for independent software development.

Collada

This is an XML (eXtensible Mark Up language) file format that
describes the structure of data. It does not have a fixed set of
elements like HTML, but rather, it is a metalanguage, or a language
for describing other languages, in this case Maya. It can potentially
describe everything from Geometry to Particles and Orient
Constraints. This format has many benefits over the other options.
As it already exists no time need be wasted designing your own
format, and whatever files are produced could be loaded into any
software with a Collada Importer.

Collada DOM (Document Object Model)
This is a loader design specifically for use in software development.
It provides a structure for loading in a Collada document and
accessing elements within to be stored in user defined class
structures.

2.2.2 The Prototype

The aim of this project was to develop a C++ program that could
take animations from Maya 8.5 and blend them together. My
research has determined that to create realistic animation blending
the Joint Hierarchy system produces far smoother results than a
point to point blending system. While it comes at a cost of more
complicated implementation the results justify the means.

However, Maya does not include an easy way of applying
weightings to joints as it designed primarily for special effects and
not for designing animation for games. Therefore to add weightings
to an existing animation it would have to be conducted outside of
Maya either within the Collada document or once the Collada
document is loaded into the C++ programme.

Adding code to a Collada file is risky as it is designed to create a
structure that can be recognised by a variety of Collada importers.
Changing code without knowing detailed information on its
structure could result in errors. Adding Code to a C++ programme
to add weights is also not a viable option for the prototype. Each
character that is loaded into the programme is more than likely to
have different Joint structures and different names for those joints.,
making an automatic weighting system extremely complicated.
Also animations can vary, so adding default weights, if it were even

15

Michael Cole Innovations

possible, to a walk animation for example would not necessarily
give a decent result.

In short the only way to add such weights to a skeleton would be to
write a separate programme entirely that could load in various
animation files and allows the user to add specific weights to
selected joints. It would then have to export the animation to a file
format that an animation blending engine would recognise.

Also quaternions, which would be preferable in a more complicated
system, will not be used as its implementation would be time
consuming, and OpenGL has pre built Matrices functions that work
with Euler Rotations. Blending using this technique however may
be harder.

The prototype is designed to load in multiple animation files and
transition blend between them. The user is able to choose an
animation which would then either commence or blend into the
current animation.

The prototype uses four animations, a Stand, a Walk, a Run and a
Jump.

To move from a walk to a run is a good example of a straight
forward transition blend. From this the prototype will show how
well it achieves the goal of a smooth blend, even without joint
weightings. If the animations are in sync with each other, meaning
the left foot is moving forward together in both animations, then
the results could be quite smooth. However if the change occurs
when the animations are out of sync then the blend would not be as
realistic.

The Standing animation is included to provide a test on how well a
walk or a run blends back to a standing stationary position and vice
versa. Again joint weighting should not play to great a part in
successful blending as the weighting would be uniform across the
entire skeleton.

The Jump again has its own purpose. Unlike the other three
animations once it has finished it would have to return to the
previous animation, for example, running taking a jump and then
continuing to run. This will show how smoothly it blends from one
type of movement to another.

16

Michael Cole Innovations

3. Construction of the prototype

Collada is by far the most satisfactory way of exporting files for
software development. Collada Maya exporters are freely available
on the internet and are easily connected to the Maya software. The
importer for software development, Collada DOM, is harder to set
up as it contains many libraries and headers that must be
connected to the project correctly before development can occur.
You can either compile the libraries yourselves under whichever
compiler you desire or you have to figure out the setup that was
used to compile the libraries to begin with and match them for your
software set-up. Needless to say a lot of time was wasted figuring
out a way to connect it.

A Loader has to be written to transfer the data stored in the
animation file into a data structure that can be accessed by C++.
The uses the Collada DOM data structure and function to access
elements and their data within a file.

The data structure for the joint hierarchy uses a modified binary
tree file structure, each node pointing to its children. Only a
pointer to the root node is required to read the entire binary tree.
Reading can be performed swiftly with a recursive function.

Geometry is only of secondary importance to the prototype as the
aim is to achieve animation blending. Skinning therefore is an
luxury addition. It is stored using 3D Coordinate classes combined
with float arrays and construction data.

Animations are separated into each key able attributes, for example
the X axis rotation of the root joint. Each of these are imported
through Collada with an 'input', 'output and 'interpolation' node. As
Each joint node has a different set of values for each animation
loaded. The joint class contains a pointer to these data arrays
under the heading of each animation.

The Animation playback system is written in OpenGL code to
create a screen that can display the joint hierarchy in a 3D space. It
runs through the joint hierarchy drawing the joint to the screen
then continuing down the hierarchy. The recursive function is set-
up in a way that every child joint inherits any translations or
rotations values that have come before it. The actual rotation
values are provided by the Blending system.

As this is quite a simplistic blending system it only handles
transition blending. The animation that is currently playing, or the
'start' animation, is stored in a node, while the next animation, or
the 'end' animation is stored in another. Based on a Lead In value it
interpolates between the two animations over time. If a joint has no

17

Michael Cole Innovations

animation applied to it within an animation the interpolation is
calculated using the original orientation and rotation. Once the
value has been calculated it is outputted to the animation playback
system which displays it to screen.

The User can select between animation using the number keys.
When a key is pressed the desired animation is assigned to the next
animation node. It is then interpolated with the current animation
until it is playing fully.

3.1 How well was it achieved

The collada DOM was unfortunately the most time consuming
section of the prototypes development due to a lack of
documentation on how to install. Even still it was the right choice
of exporters. It created an easy structure to move through and
access elements within a file.

The class declarations that were used seemed to store the
information worked well and make it easy to access and store
desired data.

figure 3.1first image shows basic Joint Hierarchy loaded to screen. second show
part way through a walk cycle.

OpenGL uses rotations and translations through the matrices. For
this reason the blending system was designed around Euler
Rotations rather than Quaternions. The use of Quaternions would
need an entirely new system to move points around which would be

18

Michael Cole Innovations

quite complex to design. However, the use of Euler rotation rather
than a more complex system of quaternions was not a good choice.
Interpolation of Euler rotations is subject to a lot of variations. For
example, the resulting blend between the walk and run did not
consistently blend together correctly. When the animations were in
sync, meaning that same leg was moving forward at the same time,
the blend happened quite smoothly. However, if the transition was
out of sync it was subject to wide fluctuations caused by the blend
software attempting to blend two joints moving away from each
other. The blend to stationary was not smooth either. While it
started in the correct place and ended in the correct place the
transition was very jerky.

As the Aim of the project was animation blending and not
animation so due to other priorities it was not possible to include
the Jumping animation.

The coding was on the erratic side. This is mainly because the
initial, experienced, design failed to take in the entire scope of the
task, meaning that additions were constantly needed. While I do
have some experience of animation blending my limited knowledge
did not realise how much was involved and similarly it was my
inexperience that decided on using Euler Rotations rather that
quaternions.

While the code was a bit of a unstructured it did however operate
correctly. The failure to animate properly was down to the
problems existing in interpolation of Euler Rotations.

19

Michael Cole Innovations

4. Conclusion

I chose this project because it links with games development I had
little knowledge on the topic of animation blending. The main
objective of this project was to research methods of animation
blending and use this research to develop a prototype that loaded
Maya files an blended their animations together. While I was not
totally successful in this aim I have gained a great deal of
knowledge around the topic, and were I to produce something
similar again I would feel more confident it designing the system.

Future versions of the software would need various improvements.
The first prototype brought to light certain aspects of the design
that had not previously occurred to me. The Joint Hierarchy
structure needs to be redesigned to allow easier reading of the
entire chain. Blending becomes more difficult if it has to traverse
the entire tree to load an animation. More care need be taken in
designing this layout.

Quaternions should be used rather than Euler rotations. Whilst
Euler rotations may be easier to implement to begin with due to
OpenGL all the research points towards Quaternions being superior
at control blending. This would mean that a Quaternion system
would need to be created that could handle Quaternion maths as
well as Quaternion interpolation.

Blender systems have to be designed specifically for specific
characters, so more care would need to be taken when designing
the input animations. Also more data needs to be stored on each
animation, such as Weightings, Lead-In, Lead-Out values and type
of animation. This would allow the blender to produce smoothly
interpolating animations ready for use in a game.

20

Michael Cole Innovations

Bibliography

Literature:
Programming Believable Character For Computer Games (Game Development
Series) by Charles River Media.

Essential Mathematics for Computer Graphics Fast by John Vince

Real-time 3D Character Animation with Visual C++ (Book & CD-ROM)
(Paperback) by Nik Lever

Sams Teach Yourself C++ in 21 Days (Sams Teach Yourself) by Jesse Liberty

OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version
2.1 (OpenGL) by OpenGL Architecture Review Board, Dave Shreiner, Mason Woo
and Jackie Neider

C Pocket Reference by Peter Prinz and Ulla Prinz

Web Sites:
Collada Sites
Introduction to Maya
http://www.gamasutra.com/features/20070329/arnaud_01.shtml

Collada Forums
http://www.collada.org/mediawiki/index.php/Main_Page
(and other related pages on this site)

http://www.feelingsoftware.com/content/view/55/72

http://sourceforge.net/projects/collada-dom

Other Sites

'Granny' HomePage 3D Package http://www.radgametools.com/granny.html

MechWarrior Blending system details
http://www.gamasutra.com/features/20030704/edsall_01.shtml

http://www.robthebloke.org/models/html/Anim_cycles.html

21

http://www.gamasutra.com/features/20030704/edsall_01.shtml
http://www.radgametools.com/granny.html
http://www.feelingsoftware.com/content/view/55/72
http://www.collada.org/mediawiki/index.php/Main_Page
http://www.gamasutra.com/features/20070329/arnaud_01.shtml

Michael Cole Innovations

22

