NVIDIA OpenGL Extension Specifications

NVIDIA OpenGL
Extension Specifications

NVIDIA Corporation

July 31, 2000

NVIDIA OpenGL Extension Specifications

Copyri ght NvIDI A Corporation, 1999, 2000.

This docunent is protected by copyright and contains information
proprietary to NVIDI A Corporation as designated in the document. The
recei pt or possession of this docunent does not convey any express or
inplied rights to reproduce, disclose, distribute or prepare deivative
works its contents or to manufacture, use, sell or inport anything that
it may describe in whole or in part. The docunent is provided as is
with no express or inplied representation or warranty of any kind as
the accuracy of the information, its fitness for a particular purpose
or otherw se.

O her OpenG. extension specifications can be found at:

http://o0ss.sgi.com projects/ogl-sanpl e/ registry/

NVIDIA OpenGL Extension Specifications Table of Contents

Tabl e of Contents

Tabl e of Content s. 3
Tabl e of NVIDIA OpenGL Extension Support...............iiiiininnnn... 4
ARB MUl tit eXtUN . .. e e e e 5
ARB t eXt Ur € CONMPIrESSI ON. .ttt ettt et e et et et e e e e e e e 6
ARB transSpoSe MBI X. . oot e e e e e 29
EXTabgr . .o 34
EXT bgra. . oo e 37
EXT bl end Col or e 39
EXT bl end m nmBX.o e 42
EXT_bl end_subtract 45
EXT_compil ed _Vertex _array. e e e e 48
EXT fOg COOrd. ... e e e e e 51
EXT _packed piXel S. ... e 58
EXT pal etted texture. e e e e e e 67
EXT_poi Nt _paramet er S. ... 75
EXT_rescal e_normal 80
EXT _secondary COl Or e e e 83
EXT _separate_specular_color.......... i 91
EXT _shared texture palette. e 96
EXT _StenCil W ap. 99
EXT texture conmpressi Oon_S3tC. 101
EXT texture cube mBp. e 109
EXT texture edge Clanmp. e e e e 123
EXT texture env_add. e e e 126
EXT texture _env_combine. 129
EXT texture filter_anisotropic...... i, 135
EXT texture lod bias......... ... e 141
EXT texture obj eCt e 145
EXT VeIt X Ar T AY . o ottt e 153
EXT_vertex_ wei ghting. e 165
NV_ Dbl end_square. 176
NV ENCE. .. e 179
NV fog di StanCe. e e e e e 188
NV _Iight mBX _eXponent e e e 192
NV_register _combiners. 195
NVt exgen _enmbossS. 221
NV texgen reflection. e 227
NV texture env_conmbi Ned. e 230
NV Vert eX _array FaNge. . .ottt i e e e e e e e e e 236
SA S texture | 0d. 247
WGEL EXT swap_control 254

Table of NVIDIA OpenGL Extension Support NVIDIA OpenGL Extension Specifications

Tabl e of NVIDI A OpenG. Extension Support

R VA 128 | RI VA TNT| GeForce | OpenG. 1.2
Ext ensi on fam |y famly famly functionality

ARB nultitexture X
ARB t exture_conpression
ARB transpose _nmatrix X
EXT_abgr X X
EXT_bgra X X
EXT_bl end_col or
EXT_bl end_m nnax
EXT_bl end_subtract
EXT _conpil ed_vertex_array X
EXT filter_anisotropic
EXT fog coord

EXT_|i ght _max_exponent
EXT_packed_pi xel s X
EXT paletted texture
EXT_poi nter_paraneters X X
EXT _rescal e_nor mal
EXT_secondary_col or X
EXT_separate_specul ar_col or X
EXT_shared_texture palette
EXT _stencil _wap X X
EXT _texture_conpression_s3tc
EXT_texture_cube_map

EXT texture_edge cl anp

EXT _texture_env_add

EXT_t exture_env_comnbi ne
EXT texture_| od bias

EXT_t exture_obj ect X
EXT_vertex_array X
EXT _vertex_wei ghting
KTX buffer_region X
NV_bl end_square
NV_fence
NV_fog_di stance

Y
ARB_i magi ng
ARB_i magi ng
ARB i magi ng

X| XX

x| XX

X X[X X]| X

X

NV_regi ster_conbi ners

NV_t exgen_enboss
NV_texgen_refl ection X X
NV_t exture_env_conbi ned X

NV_vertex_array_range
SA@S nultitexture X
SA@ S texture | od

WG EXT _swap_contr ol X
W N _swap_hi nt X X

XXX XXX XXX X XXX XXX X XY XK X KX XX XXX XK XX XXX XXX XX XXX XXX XX

Warni ng: The extension support columms are based on the | atest & greatest
NVIDI A driver release. Check your GL_EXTENSIONS string with gl GetString

at run-tinme to determ ne the specific supported extensions for a particul ar
driver version.

NVIDIA OpenGL Extension Specifications ARB_multitexture

Nanme
ARB multitexture
Nanme Strings
GL_ARB nultitexture
St at us
Conpl ete. Approved by ARB on 9/15/1998
NOTE: This extension no |onger has its own specification docunent, since
it has been included in the Qpend@ 1.2.1 Specification (downl oadabl e

fromww. opengl . org). Please refer to the 1.2.1 Specification for
nore i nformation.

ARB_texture_compression NVIDIA OpenGL Extension Specifications

Narme
ARB t exture_conpression
Nanme Strings
GL_ARB t exture_conpression
Cont act
Pat Brown, Intel Corporation (patrick.r.brown "at’ intel.com
St at us
FI NAL VERSI ON -- APPROVED BY OPENGL ARB, 3/16/2000
Ver si on
Final 1.03, 23 May 2000 (supersedes Final 1.0, 24 March 2000 -
contains a few minor fixes docunented in
the Revision History bel ow).
Nunber
ARB Ext ension #12
Dependenci es
pend@. 1.1 is required
This extension is witten against the OpenGL 1.2.1 Specification.

This extension is witten against the GLX Extensions for OpenGL
Specification (Version 1.3).

Depends on GL_ARB texture_cube_map, as cube maps may be stored in
conpressed form

Overvi ew

Conpressing texture images can reduce texture nmenory utilization and
i mprove performance when rendering textured primtives. This extension
al l ows OpenGL applications to use conpressed texture i mages by providing:

(1) A framework upon which extensions providing specific conpressed
i mge formats can be built.

(2) A set of generic conpressed internal formats that allow
applications to specify that texture inmages should be stored in
conpressed formw thout needing to code for specific conpression
formats.

An application can define conpressed texture i mages by providing a texture
i mage stored in a specific conpressed image format. This extension does
not define any specific conpressed i mage formats, but it does provide the
mechani sns necessary to enabl e ot her extensions that do.

NVIDIA OpenGL Extension Specifications ARB_texture_compression

An application can also define conpressed texture inages by providing an
unconpressed texture i mage but specifying a conpressed internal format.
In this case, the GL will automatically conpress the texture inmage using
the appropriate image format. Conpressed internal formats can either be
specific (as above) or generic. Generic conpressed internal formats are
not actual irmage formats, but are instead napped into one of the specific
conpressed formats provided by the GL (or to an unconpressed base interna
format if no appropriate conpressed format is available). Generic
conpressed internal fornats allow applications to use texture conpression
wi t hout needing to code to any particul ar conpression algorithm Generic
conpressed formats all ow the use of texture conpression across a w de
range of platforns with differing conpression algorithnms and al so all ow
future GL inplenentations to substitute inproved conpressi on nethods
transparently.

Conpressed texture inages can be obtained fromthe GL in unconpressed form
by calling GetTexlmage and in conpressed formby calling

Get Conpr essedTex| mageARB. Queried conpressed i nages can be saved and

| ater reused by calling ConpressedTex| nage[123] DARB. Pre-conpressed
texture i mages do not need to be processed by the G and shoul d
significantly inprove texture |oading performance relative to unconpressed
i mages.

Thi s extension does not define specific conpressed image formats (e.qg.
S3TC, FXT1), nor does it provide neans to encode or decode such inages.
To support images in a specific conpressed format, a hardware vendor
woul d:

(1) Provide a new extension defininig specific conpressed
<internal format> and <format> tokens for Texl mage[123] D,
TexSubl mage[123] D, CopyTexl mage[12] D, Conpr essedTex| mage[123] DARB,
Conpr essedTexSubl mage[123] DARB, and Get Conpr essedTex| mageARB cal | s.
(2) Specify the encoding of conpressed i nages of that specific format.
(3) Specify a method for deriving the size of conpressed i mages of that
specific format, using the <internalformat>, <w dth> <height>,
<dept h> paraneters, and (if necessary) the conpressed i mage itself.

| P Status
No known intellectual property issues on this general extension.
Specific conpression algorithns used to inplenent this extension (and any
ot her specific texture conpression extensions) nay be protected and
require licensing agreenents.

| ssues

(1) Should we define additional internal formats that strongly tie an
underl yi ng conpression algorithmto the formt?

RESOLVED: Not here. Explicit conpressed formats will be provided by
ot her extensions built on top of this one.

ARB_texture_compression NVIDIA OpenGL Extension Specifications

(2) Should we provide additional conpression state that gives nore control
on the level/quality of conpression? [If so, how?

RESOLVED: Yes, as a hint. Could have al so been inplenented as a [0.0,
1.0] floating-point TexParanmeter "quality" state variable (such as the
JPEG qual ity scale found in nmany apps). This control will affect only
the speed (and quality) with which a driver conpresses incomning inmages,
but will not affect the conpressed inage fornmat selected by the driver

As the spec is currently fornulated, the requirenent that quality
control not affect conpression format selection could have been rel axed
by | oosening the invariance requirenents (so that the quality contro
can affect the choice of internal format). The risk was the potentia
for subtle m pmap consistency issues if the hint changes.

(3) Mbst current conpression algorithns handle prinmarily RGB and RGBA
i mages. Does it nmake sense having generic conpressed formats for al pha,
intensity, |um nance, and |uninance-al pha?

RESOLVED:. Yes. It is conceivable that sone or all of these formats may
be compressed. |nplenmentations not having conpression algorithns for
these formats can sinply choose not to conpress and use the appropriate
base internal format instead.

(4) Full Get Texl mage support requires that the renderer deconpress the
whol e i mage. Should this extra inplenentation burden be inposed on the
renderer?

RESOLVED:. Yes, returning the unconpressed image is a useful feature for
evaluating the quality of the conpressed i nage. A deconpression engine
may al so be required for a nunber of other areas, including software
rasterization.

(5) Full TexSubl mage support nmy require that the renderer deconpress
portions of the image (or perhaps the whol e i mage), do a nerge, and then
reconpress. Even if this were done, portions of the image outside the
"nodi fi ed" area nay al so be nodified due to | ossy conpression. Should this
extra inpl enentation burden be inposed on the renderer?

RESOLVED: No. To avoid the conplications involved with nodifying a
conpressed texture inmage, only the lower-left corner may be nodified by
TexSublmage. In addition, after calling TexSubl mage, the "unnodified"
portion of the image is left undefined. An | NVALI D_OPERATI ON error
results fromany other TexSubl nage calls.

Thi s behavior allows for the use of conpressed i mages whose di nensi ons
are not powers of two, which Texlnmage will not accept. The recomended
sequence of calls for defining such images is to first call Texl nage
with a NULL <data> pointer and the inmage size paraneters padded out to
the next power of two, and then call ConpressedTexSubl mnageARB or

TexSubl mage with <xoffset>, <yoffset> and <zoffset> paraneters of zero
and the conpressed data pointed to by <data>. This behavior also allows
TexSubl mage to be used as a |ight-weight replacenent of Texlmage, where
only the inmage contents are nodified.

Certain conpressed formats nmay allow a wi der variety of edits -- their
specifications will document the restrictions under which these edits

NVIDIA OpenGL Extension Specifications ARB_texture_compression

are permtted. it is inpossible to docunent such restrictions for
unknown generic formats. It is desirable to keep the behavior of
generic formats and the specific formats they nmap to as consistent as
possi bl e.

(6) What do the return val ues of the conponent sizes (RED BITS,
GREEN BITS, ...) give for conpressed textures? Conpressed proxy textures?

RESOLVED: Sone behavior has to be defined. For both normal and proxy
textures, we return the bit depths of an unconpressed sized image that
woul d nost closely nmatch the quality of the conpression algorithmfor an
"average" texture inmage. Since conpressed image quality is highly data
dependent, the actual conpressed inmage quality may be better or worse
than the renderer’s best guess at the best matching sized interna
format. To inplement this feature in a driver, it is expected that an
error anal ysis would be done on a set of representative images, and the
resul tant "equivalent bit depths" would be hardw red constants.

(7) What shoul d Get TexLevel Paraneter with TEXTURE COVPRESSED
I MAGE_SI ZE ARB return for existing unconpressed formats? For proxy
textures?

RESOLVED: For both, an | NVALI D OPERATION error results. The actua
image to be conpressed is not available for proxies, so actually
conpressing the specified inmage is not an option

For unconpressed internal formats, we could return the actual anount of
menory taken by the texture inage. Such a mechani sm night be useful as
a netric of "how nuch space does this texture inage take". |It’s not
particularly useful for an application based texture nmanagenent schene,
since there is no informati on avail able indicating the amount of

avail able menmory. In addition, because of inplenentation-dependent
hardwar e constraints, the amount of texture nenory consumed by a texture
object is not necessarily equal to the sumof the nmenory consuned by
each of its m pnmaps. The OpenG. ARB deci ded agai nst adopting this
behavi or when this specification was approved.

(8) What about texture borders?

RESOLVED:. Not a problemfor generic conpressed formats since a base
internal format can be used if borders are not supported in the
conpressed image format. Borders may pose problens for specific
conpressi on extensions, and conpressed textures with borders might wel
be di sall owed by those extensions.

(9) Shoul d certain pixel operations be disallowed for conpressed texture
internal formats (e.g., Pixel Storage, Pixel Transfer)? What about byte
swappi ng?

RESOLVED: For unconpressed source images, all pixel storage and pixe
transfer nodes will be applied prior to conpression. For conpressed
source images, all pixel storage and transfer nodes will be ignored.
The encodi ng of conpressed i nages should be specified as a byte stream
that matches the disk file format defined for the correspondi ng i mage

t ype.

ARB_texture_compression NVIDIA OpenGL Extension Specifications

(10) Shoul d functionality be provided to allow applications to save
conpressed i mages to di sk and reuse them in subsequent runs wthout
progranmng to specific formats? |[|f so, how?

RESOLVED: Yes. This can be done wi thout know edge of specific
conpression formats in the foll ow ng manner:

* Call Texlmage with an unconpressed i nage and a generic conpressed
internal format. The texture inage will be conpressed by the A, if
possi bl e.

* Call GetTexLevel Paraneteriv with a <val ue> of TEXTURE COVWPRESSED ARB
to determine if the GL was able to store the inmage in conpressed
form

* Call GetTexLevel Paraneteriv with a <val ue> of
TEXTURE_| NTERNAL_FORMAT to determne the specific conpressed inage
format in which the inmage is stored.

* Call GetTexLevel Paraneteriv with a <val ue> of
TEXTURE_COMPRESSED | MAGE _SI ZE ARB to determine the size (in ubytes)
of the conpressed imge that will be returned by the G.. Allocate a
buffer of at least this size.

* Call Get ConpressedTexl mageARB. The GL will write the conpressed
texture image into the allocated buffer.

* Save the returned conpressed image to disk, along with the
associ ated wi dth, height, depth, border paranmeters and the returned
val ues of TEXTURE_COMPRESSED | MAGE_SI ZE_ARB and
TEXTURE_| NTERNAL_FORMAT.

* Load the conpressed image and its paraneters, and call
ConpressedTexl mage [123] DARB to use the conpressed i nage. The val ue
of TEXTURE | NTERNAL_FORMAT shoul d be used as <internal Fornmat> and
the val ue of TEXTURE COWPRESSED | MAGE S| ZE ARB shoul d be used as
<i mageSi ze>.

The saved images will be valid as long as they are used on a device
supporting the returned <internal Format> paranmeter. |f the saved inages
are used on a device that does not support the conpressed internal
format, an | NVALID ENUM error would be generated by the call to
ConpressedTexl mage_[123] D because of the unknown fornat.

Note also that to reliably deternmine if the GL will conpress an inmage
wi thout actually conpressing it, an application need only define a proxy
texture i mage and query TEXTURE_COVPRESSED ARB as above.

(11) Wthout knowi ng of the conpressed inmage format, there is no
convenient way for the client-side G X library or tracing tools to
ascertain the size of a conpressed texture inmage when sending a

Texl magelD, Texl nage2D, or Texl mage3D packet or interpret pixel storage
modes. To conplicate natters further, it is possible to create both
indirect (that mght not understand an inmage format) and direct rendering
contexts (that m ght understand an inmage fornmat) on the sane renderer.
How shoul d this be sol ved?

10

NVIDIA OpenGL Extension Specifications ARB_texture_compression

RESOLVED: A separate set of ConpressedTexl nage and

Conpr essedTexSubl mage calls has been created that allows libraries to
pass conpressed i mages along to the renderer w thout needing to
understand their specific inmage formats or how to interpret pixe

st orage nodes

(12) Are the ConpressedTexl mage[123] DARB entry points really needed?

RESOLVED: Yes. To robustly support inmages of unknown format, specific
conpressed entry points are required. Wile the extension does not
support inmages in a conpletely unspecified format (early drafts did),
havi ng a separate call means that GLX and tools such as GLS (stream
encoder) do not need intimte know edge of every conpressed i mage
format. Having separate calls also cleanly solves the probl emwhere

pi xel storage and pi xel transfer operations apply if and only if the
source image i s unconpressed

(13) Is variable-ratio conpression supported?

RESOLVED: Yes. Fixed-ratio conpression is currently the predom nant
texture conpression format, but this spec should not preclude the use of
ot her conpression schenes.

(14) Shoul d the <imageSi ze> paraneter be validated on ConpressedTexl mage
calls?

RESCLVED: Yes. Enforcenment overhead is generally trivial. Wthout

enf orcenent, an application could specify incorrect inmage sizes but

noti ce themonly when run on an indirect renderer, causing portability
problenms. There is also a reliability issue with respect to the GX
environnent -- if the conpressed i mage size provided by the user is less
than the required i mage size, the GLX server may run off the end of the
i mge and access invalid menory. A size check nmay thus be desirable to
prevent server crashes (even though that could be considered an
"undefined" result).

Whil e enforcing correct <imageSize> paranmeters is trivial for current
conpressed internal formats, it might not be reasonable on others
(particular variable-ratio conpression formats). For such formats, this
restriction should be overridden in the spec defining the formats. The
<i mageSi ze> check was made mandatory only in the final draft approved at
the March 2000 OpenGL ARB neeti ng.

(15) Shoul d Texl mage calls fall back to unconpressed i mage formats when
<internal format> is a specific conpressed format but its use in
conbination with ot her paranmeter val ues passed is not supported by the
renderer?

RESOLVED: Yes. Advantages: Wrks in exactly the sanme way as generic
formats, meaning no extra code/error checking. |Inherent linmtations of
Texl mage on specific formats shoul d be docunented in their specs and
observed by their users. One sinple query can detect fallback cases.
Di sadvantages: Silent fallback to a format not requested by the user

(16) Shoul d the texture format invariance requirenents disallow scanning

of the inmage data to sel ect a conpression nethod? What about for a base
(unconpressed) internal format?

11

ARB_texture_compression NVIDIA OpenGL Extension Specifications

RESCLVED: The primary issue is mipmap consistency. The 1.2.1 spec
defines a set of mipmaps as consistent if all are specified using the
sanme internal fornmat. However, it doesn’t require that all m pmaps are
al l ocated using the sane format -- the renderer is responsible for
ensuring mpmap consistency if it selects different formats for
different images. There is no reason to disallow scanning for base
internal formats; the renderer is responsible for doing the right thing.

The sel ection of a specific conpressed internal format is different. It
nust be independent of the the i mage data because the GL treats the
texture immage as though it were specified using the specific conpressed
internal format chosen by the renderer

(17) Shoul d functionality be provided to enunerate the specific conpressed
formats supported by the renderer? |If so, how and what will it acconplish?

RESCLVED: Yes. A glGet* query is added to return the nunber of
conpressed internal fornmats supported by the renderer and the

<internal format> tokens for each. These tokens can subsequently be used
as <internal format> paraneters for normal Texlmage calls and the new
Conpr essedTex|l mage call s.

Providing an internal format enuneration allows applications to weigh
the suitability of the various conpression nethods provided to it by the
renderer w thout needing specific know edge of the formats.
Applications can query the conponent sizes (see issue 6) to determne
the base format and approxi mate precision. Applications can directly
eval uate i mage conpression quality by having the renderer generate
conpressed texture inmages (using the returned <internalformat> val ues)
and return themin unconpressed form using Get Texl nage. Applications
shoul d al so be aware that the use of the internal formats returned by
this query is subject to the restrictions inposed by the specification
defining them The use of proxy textures allows the application to
determine if a specific set of Texlnmage paraneters is supported for a
given internal fornat.

The renderer should enunerate all supported conpression formats EXCEPT
those that operate fundanentally differently froma normal unconpressed
format. For exanple, the DirectX DXT1 conpression format is
fundanentally an RGB format, but it has a "transparent” encodi ng where
the red, green, and bl ue conponent values are forced to zero, regardless
of their original (unconpressed) values. Since such formats may have
caveats that nust be understood before being used, they should not be
enunerated by this query.

This allows for forward conpatibility -- an application can exploit
conpressi on techni ques provided by future renderers.

(18) Shoul d the separate Get ConpressedTexl mageARB function exist, or is
Get Texl mage with speci al <format> and/or <type> paraneters
sufficient?

RESOLVED: Provi de a separate Get ConpressedTexl mageARB function. The
primary rationale is for GLX indirect rendering. The client GetTexl mage
woul d require infornmation to determine if an inmage i s unconpressed (and
shoul d be decoded using pixel storage state) or conpressed (pixe

12

NVIDIA OpenGL Extension Specifications ARB_texture_compression

storage ignored). In addition, if the image is conpressed, the actua
i mge size would be required, but the only image size that could be
inferred fromthe G.X protocol is padded out to a nultiple of four

bytes. A separate call is the cleanest solution to both
New Procedures and Functions

voi d ConpressedTexl nage3DARB(enum target, int |evel,

i ssues.

enuminternal format, sizei wdth,

si zei height, sizei depth,
i nt border, sizei inmageSi ze,
const void *data);

voi d ConpressedTexl nage2DARB(enum target, int |evel,

enuminternal format, sizei wdth,

si zei height, int border

si zei inmageSize, const void *data);

voi d ConpressedTexl nagelDARB(enum target, int |evel,

enuminternal format, sizei w dth,

i nt border, sizei inmageSi ze,
const void *data);
voi d Conpr essedTexSubl mage3DARB(enum target, int |evel,
int xoffset, int yoffset,
int zoffset, sizei wdth,
si zei height, sizei depth,

enum format, sizei inageSize

const void *data);

voi d ConpressedTexSubl mage2DARB(enum target, int |evel,
int xoffset, int yoffset,
sizei width, sizei height,

enum format, sizei inageSize

const void *data);
voi d ConpressedTexSubl magelDARB(enum target, int |evel,
int xoffset, sizei wdth,

enum format, sizei inageSize

const void *data);
voi d Get Conpr essedTex|l nageARB(enum target, int |od,
void *ing);

New Tokens

Accepted by the <internal fornmat> paraneter of TexlnmgelD, Tex| nmage2D

Tex| mage3D, CopyTexl magelD, and CopyTexl mage2D:

COVPRESSED ALPHA ARB 0Xx84E9
COMPRESSED_LUM NANCE_ARB 0X84EA
COVPRESSED _LUM NANCE_ALPHA ARB 0x84EB
COVPRESSED | NTENSI TY_ARB 0X84EC
COVPRESSED RGB_ARB 0x84ED
COVPRESSED RGBA ARB OX84EE

Accepted by the <target> paraneter of H nt and the <val ue>
Get | nt egerv, GetBool eanv, GetFl oatv, and Get Doubl ev:

TEXTURE_COMPRESSI ON_HI NT_ARB Ox84EF

13

par anet er of

ARB_texture_compression NVIDIA OpenGL Extension Specifications

Addi

Addi

Accepted by the <val ue> paranmeter of GetTexLevel Paraneter:

TEXTURE_COVPRESSED | MAGE_SI ZE_ARB 0Xx86A0
TEXTURE_COVPRESSED_ARB 0x86A1

Accepted by the <val ue> paraneter of Getlntegerv, GetBool eanv, GetFloatv,
and Get Doubl ev:

NUM_COMPRESSED TEXTURE_FORVATS_ARB 0x86A2
COVPRESSED_TEXTURE_FORVATS_ARB 0x86A3

tions to Chapter 2 of the OpenG. 1.2.1 Specification (OpenG Operation)
None.

tions to Chapter 3 of the Open@ 1.2.1 Specification (Rasterization)
Modi fy Section 3.8.1, Texture |Image Specification (p.113)

(p. 113, nodify 3rd paragraph) <internal format> nay be specified as one of
the six base internal format synbolic constants listed in table 3.15, as
one of the sized internal format synbolic constants listed in table 3.16
as one of the specific conpressed internal format synbolic constants
listed in table 3.16.1, or as one of the six generic conpressed interna
format synbolic constants listed in table 3.16. 2.

(p- 113, add after 3rd paragraph)

The ARB texture_conpression specification provides no specific conpressed
internal formats but does provide a mechanismto obtain the enuns for such
formats provided by other specifications. |f the ARB texture_conpression
extension is supported, the number of specific conpressed internal format
synbol i c constants supported by the renderer can be obtained by querying
the val ue of NUM COVPRESSED TEXTURE FORVATS ARB. The set of specific
conpressed internal format synbolic constants supported by the renderer
can be obtained by querying the val ue of COWRESSED TEXTURE FORVATS ARB
The only synbolic constants returned by this query are those suitable for
general - pur pose usage. The renderer will not enunerate formats with
restrictions that need to be specifically understood prior to use.

Generic conpressed internal formats are never used directly as the
internal formats of texture images. |If <internalformat> is one of the six
generic conpressed internal formats, its value is replaced by the synbolic
constant for a specific conpressed internal format of the G’ s choosing

with the sane base internal format. |If no specific conpressed format is
avai l abl e, <internalformat> is instead replaced by the correspondi ng base
internal format. |If <internalformat> is given as or mapped to a specific

conpressed internal format, but the G. can not support images conpressed
in the chosen internal format for any reason (e.g., the conpression fornmat
m ght not support 3D textures or borders), <internalformat> is replaced by
the correspondi ng base internal fornmat and the texture inage will not be
conpressed by the G..

(p. 113, nodify 4th paragraph) ... If a conpressed internal format is
specified, the mapping of the R, G B, and A values to texture conponents
is equivalent to the napping of the correspondi ng base internal format’'s
conponents, as specified in table 3.15. The specified inmage is conpressed

14

NVIDIA OpenGL Extension Specifications ARB_texture_compression

using a (possibly lossy) conpression algorithmchosen by the G.

(p. 113, 5th paragraph) A GL inplenmentation may vary its allocation of

i nternal conponent resolution or conpressed internal format based on any
Tex|l mage3D, Texl mage2D, or Texl nmagelD (see bel ow) paraneter (except
<target>, but the allocation and chosen conpressed i nage format must not
be a function of any other state and cannot be changed once they are
established. In addition, the choice of a conpressed inage format nay not
be affected by the <data> paraneter. Allocations nust be invariant; the
sanme all ocation and conpressed i mage format nust be chosen each tine a
texture image is specified with the same paraneter values. These
allocation rules also apply to proxy textures, which are described in
section 3.8.7.

Add Table 3.16.1: Specific Conpressed Internal Formats

Conpressed | nternal Fornat Base I nternal Format

none provided here -- defined by dependent extensions

Add Table 3.16.2: Generic Conpressed Internal Formats

Generi c Conpressed |nterna

For mat Base | nternal Fornat
COVPRESSED ALPHA ARB ALPHA
COVPRESSED LUM NANCE ARB LUM NANCE
COVPRESSED _LUM NANCE_ALPHA ARB LUM NANCE_ALPHA
COVPRESSED | NTENSI TY_ARB | NTENSI TY
COVPRESSED RGB_ARB RGB

COVPRESSED RGBA ARB RGBA

Modi fy Section 3.8.2, Alternate |Image Specification
(add to end of TexSubl mage discussion, p.123)

Texture inages with conpressed internal formats may be stored in such a
way that it is not possible to edit an inage with subi nage conmands

wi t hout having to deconpress and reconpress the texture inmage being
edited. Even if the image were edited in this nanner, it may not be
possible to preserve the contents of sone of the texels outside the region
being nodified. To avoid these conplications, the GL does not support
arbitrary edits to texture inages with conpressed internal formats.

Cal l'i ng TexSubl nage3D, CopyTexSubl mage3D, TexSubl mage2D,

CopyTexSubl mage2D, TexSubl magelD, or CopyTexSublmagelD will result in an
| N\VALI D_OPERATI ON error if <xoffset>, <yoffset> or <zoffset> is not equa
to -b_s (border). 1In addition, the contents of any texel outside the
region nodified by such a call are undefined. These restrictions may be
rel axed for specific conpressed internal formats whose i mages are easily
edi t ed.

(add new subsection at end of section, p.123)

15

ARB_texture_compression NVIDIA OpenGL Extension Specifications

Conpressed Texture |nages

Texture images may al so be specified or nodified using i nage data al ready
stored in a known conpressed image format. The ARB _texture_conpression
ext ensi on defines no such formats, but provides the nechanisns for other
extensi ons that do.

The commands

voi d ConpressedTexl nagelDARB(enum target, int |evel,
enuminternal format, sizei w dth,
i nt border, sizei inmgeSi ze,
const void *data);

voi d ConpressedTex| nage2DARB(enum target, int |evel,
enuminternal format, sizei w dth,
si zei height, int border
sizei inageSize, const void *data);

voi d ConpressedTexl mnage3DARB(enum target, int |evel,
enuminternal format, sizei w dth,
si zei height, sizei depth,
i nt border, sizei inmgeSi ze,
const void *data);

define one-, two-, and three-dinensional texture images, respectively,
with incomng data stored in a specific conpressed imge format. The
<target>, <level> <internalfornmat>, <w dth>, <height> <depth>, and
<border> paraneters have the sane nmeaning as in Texl magelD, Texlnmage2D
and Texl mage3D. <data> points to conpressed i mage data stored in the
conpressed image format corresponding to <internalformat>. Since this

ext ensi on provides no specific inmage formats, using any of the six generic
conpressed internal formats as <internalformat> will result in an

| NVALI D_ENUM error.

For all other conpressed internal formats, the conpressed inmage wll be
decoded according to the specification defining the <internalformt>
token. Conpressed texture inmges are treated as an array of <inmageSi ze>
ubyt es begi nning at address <data>. All pixel storage and pixel transfer
nodes are ignored when decodi ng a conpressed texture image. |If the

<i mageSi ze> paraneter is not consistent with the fornmat, dinensions, and
contents of the conpressed inage, an |INVALID VALUE error results. [If the
conpressed image i s not encoded according to the defined i mage format, the
results of the call are undefined.

Specific conpressed internal fornmats nmay i npose format-specific
restrictions on the use of the conpressed i mage specification calls or
paraneters. For exanple, the conpressed i mage format m ght be supported
only for 2D textures or may not allow non-zero <border> values. Any such
restrictions will be docunented in the specification defining the
conpressed internal format; violating these restrictions will result in an
I NVALI D_OPERATI ON error

Any restrictions inposed by specific conpressed internal formats will be
invariant, meaning that if the GL accepts and stores a texture inage in
conpressed form providing the sane i nage to ConpressedTexl magelDARB
Conpr essedTex| mage2DARB, Conpr essedTexl nage3DARB will not result in an

| NVALI D_OPERATION error if the following restrictions are satisfied:

16

NVIDIA OpenGL Extension Specifications ARB_texture_compression

* <data> points to a conpressed texture inage returned by
Get Conpr essedTex| mnageARB (Section 6.1.4).

* <target>, <level> and <internalformat> match the <target>, <l evel>
and <format> paraneters provided to the Get ConpressedTexl nageARB cal
returni ng <data>.

* <wi dt h>, <height>, <depth>, <border>, <internalformt> and
<i mageSi ze> match t he val ues of TEXTURE W DTH, TEXTURE HEI GHT,
TEXTURE_DEPTH, TEXTURE_BORDER, TEXTURE_| NTERNAL_ FORMAT, and
TEXTURE_COMPRESSED | MAGE SI ZE ARB for inmage |evel <level> in effect at
the tinme of the Get ConpressedTex|l mageARB cal |l returning <data>

Thi s guarantee applies not just to inmages returned by
Get Conpr essedTex| mageARB, but also to any other properly encoded
conpressed texture inmage of the same size and fornat.

The commands

voi d ConpressedTexSubl magelDARB(enum target, int |evel,
int xoffset, sizei wdth,
enum format, sizei imgeSi ze
const void *data);

voi d Conpr essedTexSubl mnage2DARB(enum target, int |evel,
int xoffset, int yoffset,
sizei width, sizei height,
enum format, sizei imgeSi ze
const void *data);

voi d Conpr essedTexSubl mage3DARB(enum target, int |evel,
int xoffset, int yoffset,
int zoffset, sizei wdth,
sizei height, sizei depth,
enum format, sizei inageSize,
const void *data);

respecify only a rectangul ar region of an existing texture array, wth
incom ng data stored in a known conpressed i mage format. The <target >,
<l evel >, <xoffset>, <yoffset> <zoffset>, <w dth>, <height> and <depth>
paraneters have the sane neaning as in TexSubl magelD, TexSubl nmage2D, and
TexSubl mage3D. <data> points to conpressed i mage data stored in the
conpressed i mage format corresponding to <format>. Since this extension
provides no specific imge formats, using any of these six generic
conpressed internal fornmats as <format> will result in an | NVALI D ENUM
error.

The image pointed to by <data> and the <inmageSi ze> paraneter are
interpreted as though they were provided to ConpressedTex| nagelDARB

Conpr essedTexl mage2DARB, and ConpressedTexl nage3DARB. These conmands do
not provide for inmage format conversion, so an | NVALI D _OPERATI ON err or
results if <format> does not nmatch the internal format of the texture

i mge being nodified. |If the <inageSize> paranmeter is not consistent with
the format, dinensions, and contents of the conpressed inage (too little
or too nuch data), an I NVALI D VALUE error results.

As wi th ConpressedTexl mage calls, conpressed internal formats may have

17

ARB_texture_compression NVIDIA OpenGL Extension Specifications

additional restrictions on the use of the conpressed i mage specification
calls or parameters. Any such restrictions will be docunmented in the
specification defining the conpressed internal format; violating these
restrictions will result in an | NVALI D _OPERATI ON error

Any restrictions inposed by specific conpressed internal formats will be
invariant, meaning that if the GL accepts and stores a texture inage in
conpressed form providing the sane i mage to ConpressedTexSubl magelDARB
Conpr essedTexSubl mage2DARB, ConpressedTexSubl nage3DARB wi || not result in
an | NVALI D OPERATION error if the following restrictions are satisfied:

* <data> points to a conpressed texture image returned by
Get Conpr essedTex| mageARB (Section 6.1.4).

* <target>, <level> and <format> match the <target>, <l evel> and
<format > paranmeters provided to the Get ConpressedTex|l nageARB cal
returni ng <data>.

* <wi dt h>, <hei ght>, <depth>, <fornmat>, and <i nageSi ze> match t he val ues
of TEXTURE_W DTH, TEXTURE_HEI GHT, TEXTURE_DEPTH,
TEXTURE_| NTERNAL_FORMAT, and TEXTURE_COVPRESSED | MAGE_SI ZE_ARB f or
imge |level <level>in effect at the tine of the
Get Conpr essedTex|l mageARB cal | returning <data>.

* <wi dt h>, <hei ght>, <depth>, <format> match the val ues of
TEXTURE_W DTH, TEXTURE_HEI GHT, TEXTURE_DEPTH, and
TEXTURE_| NTERNAL_FORNMAT currently in effect for inmage |evel <level>.

* <xoffset> <yoffset> and <zoffset> are all "-", where is the
val ue of TEXTURE BORDER currently in effect for inmage |evel <level>.

Thi s guarantee applies not just to inmages returned by
Get Conpr essedTex| mageARB, but also to any other properly encoded
conpressed texture inmage of the same size

Cal I'i ng ConpressedTexSubl mage3D, ConpressedTexSubl nage2D, or
ConpressedTexSubl magelD will result in an | NVALI D OPERATION error if

<xof fset>, <yoffset> or <zoffset> is not equal to -b_s (border), or if
<wi dt h>, <hei ght>, and <depth> do not match the val ues of TEXTURE W DTH,
TEXTURE_HEI GHT, or TEXTURE DEPTH, respectively. The contents of any texe
outside the region nodified by the call are undefined. These restrictions
may be relaxed for specific conpressed internal formats whose inages are
easily edited.

Additions to Chapter 4 of the OpenG. 1.2.1 Specification (Per-Fragnent
Qperations and the Frane Buffer)

None.

Additions to Chapter 5 of the Qpen@ 1.2.1 Specification (Special Functions)
Modi fy Section 5.6, Hints (p.180)
(p. 180, nodify first paragraph)

.; FOG HI NT, indicating whether fog cal cul ations are done per pixel or
per vertex; and TEXTURE _COWPRESSI ON H NT_ARB, indicating the desired

18

NVIDIA OpenGL Extension Specifications ARB_texture_compression

quality and performance of conpressing texture inmages.

For the texture conpression hint, a <hint> of FASTEST indicates that
texture i mages should be conpressed as quickly as possible, while N CEST
i ndicates that the texture imges be conpressed with as little inmge
degradati on as possible. FASTEST should be used for one-tinme texture
conpressi on, and N CEST should be used if the conpression results are to
be retrieved by Get ConpressedTexl mageARB (Section 6.1.4) for reuse.

Additions to Chapter 6 of the Qpen@ 1.2.1 Specification (State and
St at e Requests)

Modi fy Section 6.1.3, Enunerated Queries (p.183)
(p. 183, nodify next-to-last paragraph)

For texture inages with unconpressed internal formats, queries of
TEXTURE_RED S| ZE, TEXTURE_GREEN S| ZE, TEXTURE_BLUE_SI ZE,
TEXTURE_ALPHA SI ZE, TEXTURE_LUM NANCE_SI ZE, and TEXTURE_I NTENSI TY_SI ZE
return the actual resolutions of the stored i nage array conponents, not
the resolutions specified when the inmage array was defined. For texture
imges with a conpressed internal format, the resolutions returned specify
the conponent resolution of an unconpressed internal format that produces
an imge of roughly the sanme quality as the conpressed imge in question
Since the quality of the inplenentation’s conpression algorithmis likely
dat a- dependent, the returned conponent sizes should be treated only as
rough approxi mati ons.

(p. 183, add to end of next-to-last paragraph)

TEXTURE_COMPRESSED | MAGE _SI ZE ARB returns the size (in ubytes) of the
conpressed texture image that woul d be returned by

Get Conpr essedTexl mageARB (Section 6.1.4). Querying
TEXTURE_COVMPRESSED | MAGE _SI ZE ARB is not allowed on texture images with an
unconpressed internal format or on proxy targets and will result in an

| NVALI D_OPERATION error if attenpted.

Modi fy Section 6.1.4, Texture Queries (p.184)

(add i mediately after the Get Texl nage section and before the IsTexture
section)

The conmmand

voi d Get Conpr essedTex|l nageARB(enum target, int |od,
void *ing);

is used to obtain texture images stored in conpressed form The
paraneters <target>, <lod> and <ing> are interpreted in the sane manner
as in GetTexlmage. Wien called, GetConpressedTexl nageARB writes
TEXTURE_COMPRESSED | MAGE_SI ZE ARB ubytes of conpressed i mage data to the
menory pointed to by <ing> The conpressed i nage data is formatted
according to the specification defining | NTERNAL_FORMAT. All pixe
storage and pi xel transfer nodes are ignored when returning a conpressed
texture i mage

Cal I i ng Get ConpressedTexl mageARB wi th an <l od> val ue | ess than zero or

19

ARB_texture_compression NVIDIA OpenGL Extension Specifications

greater than the maxi mum al | onabl e causes an I NVALID VALUE error. Calling
Get ConpressedTexl mageARB with a texture image stored with an unconpressed
i nternal format causes an | NVALI D _OPERATI ON error

Additions to Appendix A of the CpenG 1.2.1 Specification (lnvariance)

None.

Additions to the AGL/ GLX/ WGL Specifications
None.
GLX Protocol

(Add after GetTexlnmage to Section 2.2.2 of the GX 1.3 encodi ng spec,
p. 74)

Get Conpr essedTex| mageARB

1 CARD8 opcode (X assi gned)
1 160 GLX opcode
2 4 request |ength
4 GLX_CONTEXT_TAG context tag
4 ENUM tar get
4 I NT32 | eve
-->
1 1 Reply
1 1 unused
2 CARD16 sequence numnber
4 n reply length
8 unused
4 I NT32 conpressed inage size (in bytes) --
shoul d be between 4n-3 and 4n
12 unused
4*n LI STof BYTE t exi mage

Note that n may be zero, indicating that a GL error occurred.

Si nce pixel storage nopdes do not apply to conpressed texture inmages,
teximage is sinply an array of bytes. The client library will ignore
pi xel storage nodes and shoul d copy only <conpressed i nmage size> bytes,
regardl ess of the value of <reply | ength>.

(Add to end of Section 2.3 of the GLX 1.3 encoding spec, p.147)

20

NVIDIA OpenGL Extension Specifications ARB_texture_compression

Conpr essedTex| mage1DARB

2 32+n+p rendering conmand | ength
2 214 renderi ng command opcode
4 ENUM t ar get

4 | NT32 | evel

4 ENUM i nternal f or mat

4 | NT32 wi dt h

4 unused

4 | NT32 bor der

n LI STof BYTE i mage

4 | NT32 i mgeSi ze

p unused, p=pad(n)

If the command is encoded in a gl XRender Large request, the command
opcode and conmmand length fields are expanded to 4 bytes each

4 36+n+p rendering conmand | ength
4 214 renderi ng comand opcode

Conpr essedTex| mage2DARB

2 32+n+p rendering conmand | ength
2 215 renderi ng comand opcode
4 ENUM t ar get

4 I NT32 | eve

4 ENUM i nt ernal format

4 I NT32 wi dt h

4 I NT32 hei ght

4 I NT32 bor der

4 I NT32 i magesSi ze

n LI STof BYTE i mge

p unused, p=pad(n)

If the command is encoded in a gl XRender Large request, the command
opcode and conmmand length fields are expanded to 4 bytes each

4 36+n+p rendering conmand | ength
4 215 renderi ng comand opcode

21

ARB_texture_compression

Conpr essedTex| mage3DARB

NVIDIA OpenGL Extension Specifications

2 36+n+p rendering conmand | ength
2 216 renderi ng command opcode
4 ENUM t ar get

4 | NT32 | evel

4 I NT32 i nternal f or mat

4 | NT32 wi dt h

4 | NT32 hei ght

4 | NT32 depth

4 | NT32 bor der

4 | NT32 i mgeSi ze

n LI STof BYTE i mage

p unused, p=pad(n)

If the command is encoded in a gl XRender Lar ge
opcode and command length fiel ds are expanded

4 36+n+p
4 216

renderi ng commuand
renderi ng comuand

Conpr essedTexSubl mage1DARB

2 36+n+p renderi ng command
2 217 renderi ng command
4 ENUM t ar get

4 | NT32 | eve

4 I NT32 xof f set

4 unused

4 I NT32 wi dt h

4 unused

4 ENUM f or mat

4 I NT32 i magesSi ze

n LI STof BYTE i mage

p unused, p=pad(n)

If the command is encoded in a gl XRender Large
opcode and command length fields are expanded

4 40+n+p
4 217

renderi ng command
renderi ng command

22

request, the conmand
to 4 bytes each.

| ength
opcode

| ength
opcode

request, the commuand
to 4 bytes each.

| ength
opcode

NVIDIA OpenGL Extension Specifications ARB_texture_compression

Conpr essedTexSubl mage2DARB

2 36+n+p rendering conmand | ength
2 218 renderi ng command opcode
4 ENUM t ar get

4 | NT32 | evel

4 I NT32 xof f set

4 | NT32 yof f set

4 | NT32 wi dt h

4 | NT32 hei ght

4 ENUM f or mat

4 | NT32 i mgeSi ze

n LI STof BYTE i mage

p unused, p=pad(n)

If the command is encoded in a gl XRenderLarge request, the conmand
opcode and command |l ength fields are expanded to 4 bytes each

4 40+n+p renderi ng comand | ength
4 218 renderi ng command opcode

Conpr essedTexSubl mage3DARB

2 44+n+p renderi ng command | ength
2 219 renderi ng comand opcode
4 ENUM t ar get

4 I NT32 | eve

4 I NT32 xof f set

4 I NT32 yof f set

4 I NT32 zof f set

4 I NT32 wi dt h

4 I NT32 hei ght

4 I NT32 dept h

4 ENUM f or mat

4 I NT32 i magesSi ze

n LI STof BYTE i mage

p unused, p=pad(n)

If the command is encoded in a gl XRender Large request, the command
opcode and conmmand length fields are expanded to 4 bytes each

4 48+n+p rendering conmand | ength
4 219 renderi ng comand opcode

Errors

Errors for conpressed Texl nage and TexSubl nage calls specific to
conpr essi on:

| NVALI D_OPERATI ON i s generated by TexSubl nagelD, TexSubl nage2D,

TexSubl mage3D, CopyTexSubl magelD, CopyTexSubl mage2D, or CopyTexSubl nage3D
if the internal format of the texture image is conpressed and <xoffset >,
<yoffset> or <zoffset> does not equal -b, where b is value of
TEXTURE_BORDER

23

ARB_texture_compression NVIDIA OpenGL Extension Specifications

I NVALI D VALUE i s generated by ConpressedTexSubl nagelDARB,

Conpr essedTexSubl mage2DARB, or ConpressedTexSubl mage3DARB if the entire
texture image is not being edited: if <xoffset> <yoffset> or <zoffset>
is greater than -b, <xoffset> + <width> is | ess than wt+b, <yoffset> +
<height> is |l ess than h+b, or <zoffset> + <depth> is |less than d+b, where
b is the value of TEXTURE BORDER, wis the value of TEXTURE WDTH, h is
the val ue of TEXTURE HEI GHT, and d is the value of TEXTURE_DEPTH

| N\VALI D ENUM i s gener ated by ConpressedTex| nagelDARB

Conpr essedTex| mage2DARB, or Conpr essedTex| nage3DARB

Conpr essedTexSubl magelDARB, ConpressedTexSubl mage2DARB, or

Conpr essedTexSubl mage3DARB, if <internal format> is any of the six generic
conpressed internal formats (e.g., COVWRESSED RGBA ARB)

| NVALI D_OPERATI ON i s generated by ConpressedTex| nagelDARB

Conpr essedTex| mage2DARB, Conpr essedTex| nage3DARB

Conpr essedTexSubl magel1DARB, ConpressedTexSubl mage2DARB, or

Conpr essedTexSubl mage3DARB, if any paraneter conbinations are not
supported by the specific conpressed internal format. Such invalid
conbi nati ons are docunented in the specification defining the interna
format.

| NVALI D_VALUE i s generated by ConpressedTex| magelDARB,

Conpr essedTex| mage2DARB, or Conpr essedTex| nage3DARB

Conpr essedTexSubl magelDARB, ConpressedTexSubl mage2DARB, or

Conpr essedTexSubl mage3DARB, if <inmageSize> is not consistent with the
format, dinensions, and contents of the specified image. The appropriate
val ue for the <inageSize> paraneter is docunented in the specification
defining the conpressed internal fornat.

Undefined results (including abnornal programtermnation) are generated
by ConpressedTexl magelDARB, ConpressedTex| mage2DARB, or

Conpr essedTex| mage3DARB, Conpr essedTexSubl nagelDARB

Conpr essedTexSubl mage2DARB, or ConpressedTexSubl mage3DARB, is not encoded
in a manner consistent with the specification defining the interna
format.

| NVALI D_OPERATI ON i s generated by ConpressedTexSubl nagelDARB
Conpr essedTexSubl mage2DARB, or ConpressedTexSubl nage3DARB i f <format> does
not match the internal format of the texture inmage being nodified.

| NVALI D_OPERATI ON i s generated by Cet TexLevel Paranmeter[if]v if <target> is
PROXY_TEXTURE_1D, PROXY_TEXTURE 2D, or PROXY_TEXTURE 3D and <value> is
TEXTURE_COVPRESSED | MAGE_SI ZE_ARB.

| NVALI D_OPERATI ON i s generated by Get TexLevel Paraneter[if]v if the
internal format of the queried texture image is not conpressed and <val ue>
i s TEXTURE_COMPRESSED | MAGE_SI ZE_ARB.

| NVALI D_OPERATI ON i s generated by Get ConpressedTexl mageARB if the interna
format of the queried texture inage is not conpressed.

Errors for conpressed Texl mage and TexSubl nage calls not specific to
conpr essi on:

24

NVIDIA OpenGL Extension Specifications ARB_texture_compression

I NVALI D ENUM i s generated by ConpressedTex|l nage3DARB or
Conpr essedTexSubl mage3DARB i f <target> is not TEXTURE 3D.

I NVALI D ENUM i s generated by ConpressedTexl nage2DARB or

Conpr essedTexSubl mage2DARB i f <target> is not TEXTURE 2D,
TEXTURE_CUBE_MAP_PCSI Tl VE_X_ARB, TEXTURE_CUBE_MAP_NEGATI VE_X_ARB,
TEXTURE_CUBE_MAP_POSI TI VE_Y_ARB, TEXTURE_CUBE_MAP_NEGATI VE_Y_ARB,
TEXTURE_CUBE_MAP_PCSI TI VE_Z_ARB, or TEXTURE_CUBE_MAP_NEGATI VE_Z_ARB.

| NVALI D ENUM i s generated by ConpressedTexl nagelDARB or
Conpr essedTexSubl magelDARB i f <target> is not TEXTURE 1D.

| NVALI D_VALUE is generated by ConpressedTex| magelDARB,
Conpr essedTex| mage2DARB, Conpr essedTex| nage3DARB,

Conpr essedTexSubl magelDARB, ConpressedTexSubl magelDARB, or
Conpr essedTexSubl mage3DARB i f <l evel > i s negati ve.

| NVALI D_VALUE is generated by ConpressedTex| magelDARB,

Conpr essedTex| mage2DARB, Conpr essedTex| nage3DARB,

Conpr essedTexSubl magelDARB, ConpressedTexSubl mage2DARB, or

Conpr essedTexSubl mage3DARB, if <w dth>, <height> or <depth> is negative.

| NVALI D_VALUE is generated by ConpressedTex| magelDARB,
Conpr essedTex| mage2DARB, or ConpressedTex|l mage3DARB i f <wi dt h>, <hei ght >,
or <depth> can not be represented as 2"k+2 for sone integer val ue k.

| NVALI D_VALUE is generated by ConpressedTexl magelDARB,
Conpr essedTex| mage2DARB, or ConpressedTex|l mage3DARB i f <border> i s not
zero or one.

| N\VALI D_VALUE is generated by ConpressedTex|l nagelDARB,

Conpr essedTex| mage2DARB, Conpr essedTex!| nage3DARB,

Conpr essedTexSubl magel1DARB, ConpressedTexSubl magelDARB, or

Conpr essedTexSubl mage3DARB if the call is nmade between a call to Begin and
the corresponding call to End.

| NVALI D_VALUE is generated by ConpressedTexSubl magelDARB,

Conpr essedTexSubl mage2DARB, or ConpressedTexSubl mage3DARB i f <xof f set >,
<yoffset> or <zoffset> is less than -b, <xoffset> + <width> is greater
than wtb, <yoffset> + <height> is greater than h+b, or <zoffset> + <depth>
is greater than d+b, where b is the value of TEXTURE BORDER, wis the

val ue of TEXTURE_WDTH, h is the value of TEXTURE HEIGHT, and d is the

val ue of TEXTURE DEPTH.

| N\VALI D VALUE is generated by Get ConpressedTexl mageARB if <l od> is
negative or greater than the naxi mum all owabl e | evel .

25

ARB_texture_compression

New St at e

(table 6.12, p.202)

NVIDIA OpenGL Extension Specifications

Initial
Get Val ue Type Get Command Val ue Description Sec. Attribute
TEXTURE_COWPRESSED | MAGE_SI ZE_ ARB n x Z+ GetTexLevel - 0 size (in 3.8
Par aret er ubyt es)
of xD conpressed
texture image i
TEXTURE_COVPRESSED ARB n B Get TexLevel - FALSE True if xD 3.8
Par aret er i mage i has
a conpressed
internal fornmat
(table 6.23, p.213)
Initial
Get Val ue Type Get Conmmand Val ue Description Sec. Attribute
TEXTURE_COVPRESSI ON_HI NT_ARB Z 3 Cet | nt egerv DONT_ Texture 5.6 hi nt
CARE conpr essi on
qual ity hint
(table 6.25, p. 215)
M ni num
Get Val ue Type Get Conmmand Val ue Description Sec. Attribute
NUM_COMPRESSED TEXTURE_FORVATS ARB Z Get I nt egerv 0 Number of 3.8
enurmer at ed
conpr essed
texture
formats
COVPRESSED_TEXTURE_FORVATS_ARB 0* x Z Cetlntegerv Enunerated 3.8

Revi sion History

1.03, 05/23/00 prbrownl:

Removed stray "None."

to Chapter 5.

1. 02, 05/08/00 prbrownl:

"const" qualifiers)

Functi ons"

section.

conpr essed
texture
formats

paragraph in nodifications

Fi xed prototype of GetConpressedTexl mageARB (no
in "New Procedures and

Changed <internal f or mat >

paraneter of ConpressedTexlmage functions to be

an "enunt

i nstead of an

"int". "int" was carried

over only on Texlmage calls as a 1.0 | egacy --

t he newer CopyTexl mage call

1.01, 04/11/00 prbrownl: M nor

bug fixes to the first

t akes an "enunt.

publ i shed versi on.

Fi xed prototypes to natch extension spec

standards (no "G." type prefixes).
coupl e erroneous function nanes.

Fi xed a
Added "const™

qualifier to prototypes involving i nage data not
nodi fied by the Q.
conpressed formats apply to texture nmaps
supported by GL_ARB texture cube_ nap.

1.0, 03/24/00 prbrownl:

* Conpr essedTexSubl nage:

26

Added text to indicate that

Appl i ed changes approved as part of the extension
at the March 2000 ARB neeti ng,

as foll ows:

Only allowed if the

NVIDIA OpenGL Extension Specifications ARB_texture_compression

0.81, 03/07/00 prbrownl:

0.8, 02/23/00 prbrownl:

0.76, 02/16/00 prbrownl:
0.75, 02/07/00 prbrownl:

entire image is replaced. Docunment that this
restriction can be relaxed for specific
conpressi on extensi ons.

* Renanmed TEXTURE_|I MAGE_SI ZE ARB to
TEXTURE_COVPRESSED | MAGE_SI ZE_ARB.

* Querying inmage size on unconpressed inmages is
now an | NVALI D_OPERATI ON error.

* | NVALI D VALUE error is generated if <imgeSi ze>
is inconsistent with the inage data. This
restriction may be overridden by specific
extensions only if requiring an i nage size
check is unreasonabl e.

* Added document ai on of undefi ned behavior for
Conpr essedTex| mage/ Subl mage if the i mage data
is encoded in a nanner inconsistent with the
spec defining the conpressed i mage format.

Fi xed issue (16). Text was truncated.
Modi fi ed i nvari ance section. <data> can not
af fect the choice of conpressed interna
format, but can theoretically affect regular
conponent resol ution.

* Add new function Get ConpressedTex|l mage to dea
with subtle G.X issues.

* @GLX protocol for ConpressedTex| mage/ Subl mage
and Get ConpressedTex|l mage hol ds both a padded
i mage size (for GX data transfer) and actua
i mge size (for packing in user buffers).

M nor wordi ng cl ean-ups.

Added enum and GLX opcode val ues al |l ocated from
OpenGL Extensions and GLX registries.

Fi xed error docunentation for TexSublmage calls
of arbitrary alignnment (did not docunent that the
internal format had to be conpressed). Renoved
references to CopyTexl mage3D, whi ch doesn’t
actual ly exist.

Per Kurt Akel ey suggestions: (1) Renaned

Texl mageConpr essed to ConpressedTexl nage to
conformw th nam ng conventions, (2) clarified
that the main feature distinguishing

Conpr essedTex[Sub] I mage calls from norma
Tex[Sub] Image calls is conpressed input data, (3)
added query to explicitly determ ne whether the
internal format of a texture is conpressed.

Mar ked previously unresol ved i ssues as resol ved
per the ARB working group. Added docs for errors
not specific to conpression for the new

Conpr essedTex|l mage and ConpressedTexSubl mage
calls. Added queries to enunerate specific
conpressed texture fornmats.

Removed "gl" and "G._" prefixes.

I ncorporated feedback from 12/99 ARB neeting

and a nunber of other revisions.

27

ARB_texture_compression

0.7,

0. 2,

12/ 03/ 99 prbrownl:
10/ 28/ 99 prbrownl:

10/ 21/ 99 prbrownl:
10/ 19/ 99 prbrownl:

NVIDIA OpenGL Extension Specifications

I ncorporated coments frompublic review of 0.2
docunent .

Renaned to ARB_texture_conpression.

functional changes.

Edi ts suggested by 3dfx.

Initial

revision.

28

Si gni fi cant

NVIDIA OpenGL Extension Specifications ARB_transpose_matrix

Nanme
ARB transpose_matri x
Nanme Strings
GL_ARB transpose_matri x
Cont act
David Blythe (blythe "at’ sgi.con)
St at us
Conpl ete. Approved by ARB on 12/8/1999
Ver si on

Last Modified Date: January 3, 2000
Aut hor Revision: 1.3

Nurber
ARB Ext ensi on #3
Dependenci es

This extensions is witten against the QpenG 1.2 Specification.
May be inplenented in any version of OpenG

Overvi ew

New functions and tokens are added all owi ng application matrices

stored in row major order rather than colum major order to be
transferred to the OpenCGL inplenentation. This allows an application
to use standard C-language 2-dinensional arrays (nfrowj[col]) and

have the array indices match the expected matri x row and col umm i ndexes.
These arrays are referred to as transpose matrices since they are

the transpose of the standard matrices passed to OpenG.

Thi s extension adds an interface for transfering data to and fromthe
Opend@ pipeline, it does not change any Qpen@ processing or inmply any
changes in state representation
| P Status
No IPis believed to be invol ved.
| ssues
* Why do this?
It's very useful for layered libraries that desire to use two
di mensional C arrays as matrices. It avoids having the |ayered
library performthe transpose itself before calling OpenG since

nost OpenGL inplenentations can efficiently performthe transpose
while reading the matrix fromclient nenory.

29

ARB_transpose_matrix NVIDIA OpenGL Extension Specifications

* Why not add a node?
It’s substantially nore confusing and conplicated to add a node.
Sinply adding two new entry points saves consi derabl e confusion
and avoi ds having layered libraries need to query the current node
in order to send a matrix with the correct nmenory | ayout.

* Why not a utility routine in GLU
It costs sone performance. It is believed that nbost OpenG
i mpl ement ations can performthe transpose in place with negligble
performance penalty.

* Why use the nane transpose?
It’s sure a lot less confusing than trying to ascribe unamnbi guous
meaning to ternms like row and colum. It could be matrix_transpose
rat her than transpose_matrix though.

* Short Transpose to Trans?

New Procedures and Functions

voi d LoadTransposeMatri x{fd}ARB(T ni 16]);
void Milt TransposeMatri x{fd}ARB(T ni 16]);

New Tokens

Accepted by the <pnane> paraneter of GetBool eanv, Getlntegerv, GetFloatv,
and Get Doubl ev

TRANSPOSE_MCODELVI EW MATRI X_ARB Ox84E3
TRANSPOSE_PRQJECTI ON_MATRI X_ARB 0x84E4
TRANSPOSE_TEXTURE_MATRI X_ARB 0x84E5
TRANSPOSE_COLOR_MATRI X_ARB Ox84E6
Additions to Chapter 2 of the 1.2 OpenG. Specification (OpenG. Operation)
Add to Section 2.10.2 Matrices <before Loadldentity>

LoadTransposeMatri xARB takes a 4x4 matrix stored in row nmajor order as

30

NVIDIA OpenGL Extension Specifications ARB_transpose_matrix

Let transpose(mn) be defined as

n[0] = nf0];
n[1] = nf4];
n[2] = n8];
n[3] = nf12];
n[4] = n{1];
n[5] = n{5];
n[6] = nf9];
n[7] = n13];
n[8] = nf2];
n[9] = n{6];
n[10] = ni 10];
n[11] = nf 14];
n[12] = n{3];
n[13] = nl7];
n[14] = nf 11];
n[15] = nf 15];

The effect of LoadTransposeMatri xARB(m is then the sane as the effect of

the conmand sequence

float n[16];
transpose(mn)
LoadMatri x(n);

The effect of MiltTransposeMatri xARB(m) is then the sane as the effect of

the command sequence
float n[16];
transpose(mn);
Mul t Matri x(n);
Additions to Chapter 3 of the 1.2 OpenG. Specification (Rasterization)

None

Additions to Chapter 4 of the 1.2 OpenG. Specification (Per-Fragment Operations

and the Franebuffer)

None

Additions to Chapter 5 of the 1.2 OpenG. Specification (Special Functions)

None

Additions to Chapter 6 of the 1.2 OpenG Specification (State and State
Request s)

Matrices are queried and returned in their transposed formby calling
Get Bool eanv, Getlntegerv, CetFloatv, and GetDoublev with <pname> set to

TRANSPOSE_MODELVI EW MATRI X_ARB, TRANSPOSE_PRQIECTI ON_MATRI X_ARB,
TRANSPOSE_TEXTURE_NMATRI X_ARB, or TRANSPCSE_COLOR_MATRI X_ARB.

The effect of GetFl oatv(TRANSPOSE MODELVI EW MATRI X ARB, m) is then the sane

as the effect of the conmand sequence

31

ARB_transpose_matrix NVIDIA OpenGL Extension Specifications

float n[16];
Get Fl oat v(MODELVI EW MATRI X_ARB, n) ;
transpose(n, m;
Simlar results occur for TRANSPOSE PRQIECTI ON_MATRI X _ARB,
TRANSPOSE_TEXTURE_MATRI X_ARB, and TRANSPOSE_COLOR_MATRI X_ARB.
Additions to Appendix A of the CpenG 1.2.1 Specification (Ilnvariance)
None
Additions to the G.X Specification
None
G.X Protocol
LoadTransposeMatri x and Mul t TransposeMatri x are | ayered
on top of LoadMatrix and MiltMatrix protocol
performng client-side translation. The Get conmands
are passed over the wire as part of the generic GCet
protocol with no translation required.
Errors
No new errors, but error behavoir is inherited by the commands
that the transpose commands are inplenented on top of
(LoadMatrix, MultMatrix, and Get*).
New St at e
None

TRANSPOSE * MATRI X ARB refer to the sane state as their non-transposed
count er parts.

New | mpl ement ati on Dependent State

None
Revi sion History

Revision 1.1 - initial draft (18 Mar 1999)
* Revision 1.2 - changed to use |ayered specification and ARB affix
(23 Nov 1999)

* Revision 1.3 - Mnor tweaks to G.X protocol and Errors. (7 Dec 1999)
Conf or mance Testing

Load and Multiply the nodelview matrix (initialized to identity

each tine) using LoadTransposeMatri xf ARB and Mult TransposeMat ri xf ARB
with the matrix:

32

NVIDIA OpenGL Extension Specifications ARB_transpose_matrix

—~ e~~~
w O o1k
~AOONDN
Ok, ~NWw
DN 00D
~— N —

10 11 1
13 14 15 1
and get the nodel view matri x usi ng TRANSPOSE MODELVI EW MATRI X_ARB and
validate that the matrix is correct. Get the matrix using
MODELVI EW MATRI X and verify that it is the transpose of the above
matrix. Load and Multiply the nodel view matrix using LoadMatri xf
and MultMatrixf with the above matrix and verify that the correct
matrix is on the nodel view stack using gets of MODELVI EW MATRI X

and TRANSPOSE_MODELVI EW MATRI X_ARB.

33

EXT_abgr NVIDIA OpenGL Extension Specifications

Narme
EXT_abgr
Nanme Strings
GL_EXT_abgr
Ver si on
$Dat e: 1995/03/31 04:40:18 $ $Revision: 1.10 $
Nunber
1
Dependenci es
None
Overvi ew
EXT_abgr extends the list of host-nenory color fornmats. Specifically,
it provides a reverse-order alternative to i mage format RGBA. The ABGR
conponent order matches the cpack Iris G. format on bi g-endi an nmachi nes.
New Procedures and Functions
None
New Tokens

Accepted by the <fornat> paraneter of DrawPi xels, GetTexl mage,
ReadPi xel s, Texl magelD, and Texl| mage2D:

ABGR_EXT 0x8000

Additions to Chapter 2 of the G. Specification (OpenG. Qperation)
None

Additions to Chapter 3 of the GL Specification (Rasterization)

One entry is added to table 3.5 (DrawPi xel s and ReadPi xel s formats).
The new table is:

34

NVIDIA OpenGL Extension Specifications

Nane
COLOR _|I NDEX
STENCI L_| NDEX
DEPTH_COVPONENT
RED

GREEN

BLUE

ALPHA

R&B

RGBA

LUM NANCE

LUM NANCE_ALPHA
ABGR_EXT

Type

| ndex

| ndex

Conponent
Conponent
Conponent
Conponent
Conponent
Conponent
Conponent
Conponent
Conponent
Conponent

El ement s

Col or | ndex
Stencil val ue
Dept h val ue
R

G

B

A

R G B

R G B A

Lunm nance val ue
Lum nance val ue
A B G R

Tabl e 3.5: DrawPi xel s and ReadPi xel s formats.
gives a description of and the nunber and order of elenments in a

group.

A

EXT_abgr

The third col um

Additions to Chapter 4 of the G. Specification (Per-Fragnent Operations

and

Addi

Addi

Addi

the Franebuffer)

The new f or mat
Fr anebuf f er.

BLUE, ALPHA, RGB, RGBA, ABGR _EXT, LUM NANCE, or
the GL is in color

The new f or mat

i ndex node,

is added to the discussion of

is added to the discussion of Cbtaining Pixels fromthe
It should read "

If the <format> is one of RED, GREEN
LUM NANCE_ALPHA, and

then the col or

I ndex Lookup.

i ndex is obtained."

It should

read "If <format> is one of RED, GREEN, BLUE, ALPHA, RGB, RGBA,

ABGR_EXT, LUM NANCE, or
reference 4 tables of color conponents:

LUM NANCE_ALPHA

then the index is used to
PI XEL_MAP_| _TO R

PIXEL_MAP | _TO G, PIXEL_MAP | TO B, and PIXEL_MAP | _TO A."

tions to Chapter 5 of the GL Specification (Specia

None

Functi ons)

tions to Chapter 6 of the GL Specification (State and State Requests)

None

tions to the GX Specification

None

Pr ot ocol

One entry is added to tables 1 and 5 in the GLX Protoco

encodi ng

0x8000

35

Speci fication:

EXT_abgr NVIDIA OpenGL Extension Specifications

Table A 2 is al so extended:

f or mat nel enent s
GL_ABGR EXT s
Errors
None
New St at e
None

New | npl enent ati on Dependent State

None

36

NVIDIA OpenGL Extension Specifications EXT_bgra

Nanme
EXT_bgra
Nanme Strings
GL_EXT bgra
Ver si on

M crosoft revision 1.0, May 19, 1997 (drewb)
$Date: 1997/09/22 23:03:13 $ $Revision: 1.1 $

Nunber
129

Dependenci es
None

Overvi ew
EXT _bgra extends the |ist of host-nenory col or fornats.
Specifically, it provides formats which match the nmenory | ayout of
W ndows DIBs so that applications can use the sane data in both
W ndows APl calls and OpenGL pi xel APl calls.

New Procedures and Functions
None

New Tokens

Accepted by the <fornat> paraneter of DrawPi xels, GetTexl mage,
ReadPi xel s, Texl magelD, and Texl| mage2D:

BGR_EXT 0x80EO
BGRA_EXT 0x80E1

Additions to Chapter 2 of the 1.1 Specification (OQpenG. Operation)
None
Additions to Chapter 3 of the 1.1 Specification (Rasterization)

One entry is added to table 3.5 (DrawPi xel s and ReadPi xel s formats).
The new table is:

37

EXT_bgra NVIDIA OpenGL Extension Specifications

Nane Type El enent s Target Buffer
COLOR_| NDEX | ndex Col or | ndex Col or
STENCI L_| NDEX | ndex Stencil val ue St enci |
DEPTH_COVPONENT Conponent Dept h val ue Dept h
RED Conponent R Col or
GREEN Conponent G Col or
BLUE Conmponent B Col or
ALPHA Conponent A Col or
RGB Conponent R G B Col or
RGBA Conponent R G B, A Col or
LUM NANCE Conponent Lum nance val ue Col or
LUM NANCE_ALPHA Conponent Lum nance val ue, A Col or
BGR_EXT Conponent B, G R Col or
BGRA EXT Conponent B G R A Col or

Tabl e 3.5: DrawPi xel s and ReadPi xel s formats. The third col um
gives a description of and the nunber and order of elenments in a

group.

Additions to Chapter 4 of the 1.1 Specification (Per-Fragnment Operations
and the Franebuffer)

The new format is added to the di scussion of Cbtaining Pixels from
the Franmebuffer. It should read " If the <format> is one of RED,
GREEN, BLUE, ALPHA, RCGB, RGBA, BGR _EXT, BGRA _EXT, LUM NANCE, or
LUM NANCE ALPHA, and the GL is in color index node, then the color
i ndex i s obtained."

The new format is added to the discussion of Index Lookup. It should
read "If <format> is one of RED, GREEN, BLUE, ALPHA, RGB, RGBA,
BGR _EXT, BGRA EXT, LUM NANCE, or LUM NANCE ALPHA, then the index is
used to reference 4 tables of color components: PIXEL MAP_ | TO R
PIXEL_MAP_| _TO G PIXEL_MAP_I _TO B, and PI XEL_MAP_| _TO A. "

Additions to Chapter 5 of the G. Specification (Special Functions)
None

Additions to Chapter 6 of the GL Specification (State and State Requests)
None

Revi sion History
Oiginal draft, revision 0.9, Cctober 13, 1995 (drewb)
Cr eat ed

M nor revision, revision 1.0, May 19, 1997 (drewb)
Renmoved M crosoft Confidential.

38

NVIDIA OpenGL Extension Specifications EXT_blend_color

Name
EXT bl end_col or
Nanme Strings
GL_EXT bl end_col or
Ver si on
$Date: 1995/03/31 04:40:19 $ $Revision: 1.7 $
Nunber
2
Dependenci es
None
Overvi ew
Bl endi ng capability is extended by defining a constant color that can
be included in blending equations. A typical usage is blending two
RGB images. Wthout the constant blend factor, one i mage nust have
an al pha channel with each pixel set to the desired blend factor.
New Procedures and Functions
voi d Bl endCol or EXT(cl anpf red,
cl ampf green,
cl anpf bl ue,
cl ampf al pha) ;
New Tokens

Accepted by the <sfactor> and <df actor> paraneters of Bl endFunc:

CONSTANT_COLOR_EXT 0x8001
ONE_M NUS_CONSTANT_COLOR_EXT 0x8002
CONSTANT_ALPHA EXT 0x8003
ONE_M NUS_CONSTANT_ALPHA_EXT 0x8004

Accept ed by the <pnane> paraneter of GetBool eanv, Getlntegerv,
Get Fl oatv, and Get Doubl ev:

BLEND COLOR_EXT 0x8005

Additions to Chapter 2 of the G. Specification (OpenG. Qperation)
None

Additions to Chapter 3 of the GL Specification (Rasterization)

None

39

EXT_blend_color NVIDIA OpenGL Extension Specifications

Additions to Chapter 4 of the G. Specification (Per-Fragnent Operations
and the Franebuffer)

The conmands that control blending are now Bl endFunc and Bl endCol or EXT.
A constant color to be used in the blending equation is specified by

Bl endCol or EXT. The four paraneters are clanped to the range [0, 1]
before being stored. The default value for the constant bl ending col or
is (0,0,0,0).

The constant color can be used in both the source and destination
bl ending factors. Four lines are added to table 4.1 and table 4. 2:

Val ue Bl end Factors

ZERO (0, 0, 0, 0)

ONE (1, 1, 1, 1)

DST_COLOR (Rd/ Kr, Gd/Kg, Bd/Kb, Ad/Ka)

ONE_M NUS_DST_COLOR (1, 1, 1, 1) - (Rd/Kr, Gd/Kg, Bd/ Kb, Ad/ Ka)
SRC_ALPHA (As, As, As, As) / Ka

ONE_M NUS_SRC_ALPHA (1, 1, 1, 1) - (As, As, As, As) / Ka
DST_ALPHA (Ad, Ad, Ad, Ad) / Ka

ONE_M NUS_DST_ALPHA (1, 1, 1, 1) - (Ad, Ad, Ad, Ad) / Ka
CONSTANT_COLOR_EXT (Rc, Gc, Bc, Ac)

ONE_M NUS_CONSTANT COLOR EXT (1, 1, 1, 1) - (Re, G, Bc, Ac)
CONSTANT_ALPHA _EXT (Ac, Ac, Ac, Ac)

ONE_M NUS_CONSTANT ALPHA EXT (1, 1, 1, 1) - (Ac, Ac, Ac, Ac)
SRC_ALPHA SATURATE (f, f, f, 1)

Table 4.1: Values controlling the source blending function and the
source bl ending values they conpute. Ka = 2**m- 1, where mis the
number of bits in the A color conponent. Kr, Kg, and Kb are sinmlarly
determi ned by the nunmber of bits in the R G and B col or conponents.
f = mn(As, 1-Ad) / Ka.

Val ue Bl end Factors

ZERO (0, 0, 0, 0)

ONE (1, 1, 1, 1)

SRC_COLOR (Rs/Kr, Gs/Kg, Bs/Kb, As/Ka)

ONE_M NUS_SRC_COLOR (1, 1, 1, 1) - (Rs/Kr, Gs/Kg, Bs/ Kb, As/ Ka)
SRC_ALPHA (As, As, As, As) / Ka

ONE_M NUS_SRC_ALPHA (1, 1, 1, 1) - (As, As, As, As) / Ka
DST_ALPHA (Ad, Ad, Ad, Ad) / Ka

ONE_M NUS_DST_ALPHA (1, 1, 1, 1) - (Ad, Ad, Ad, Ad) / Ka
CONSTANT_COLOR_EXT (Rc, Gc, Bc, Ac) NEW
ONE_M NUS_CONSTANT_COLOR_EXT (1, 1, 1, 1) - (Rc, G, Bc, Ac) NEW
CONSTANT_ALPHA_EXT (Ac, Ac, Ac, Ac) NEW
ONE_M NUS_CONSTANT _ALPHA_EXT (1, 1, 1, 1) - (Ac, Ac, Ac, Ac) NEW

Tabl e 4.2: Values controlling the destination blending function and
the destination bl ending values they compute. Ka = 2**m- 1, where
mis the nunber of bits in the A color conmponent. Kr, Kg, and Kb
are sinmlarly determned by the number of bits inthe R G and B
col or conponents.

Rc, Gc, Bc, and Ac are the four conponents of the constant bl ending

color. These blend factors are not scaled by Kr, Kg, Kb, and Ka,
because they are already in the range [0, 1].

40

NVIDIA OpenGL Extension Specifications EXT_blend_color

Additions to Chapter 5 of the G Specification (Special Functions)
None

Additions to Chapter 6 of the GL Specification (State and State Requests)
None

Additions to the G.X Specification
None

GLX Protocol

A new G rendering comand is added. The follow ng command is sent to the
server as part of a gl XRender request:

Bl endCol or EXT

20 renderi ng command | ength
4096 renderi ng comand opcode
FLOAT32 red

FLOAT32 green
FLOAT32 bl ue
FLOAT32 al pha

ArbhbBADODN

Errors

| NVALI D_OPERATI ON is generated if Bl endCol orEXT is called between
execution of Begin and the corresponding call to End.

New St at e
Initial
Get Val ue Get Command Type Val ue Attrib
BLEND COLOR _EXT Get Fl oat v C (0,0,0,0) col or-buffer

New | mpl ement ati on Dependent State

None

41

EXT_blend_minmax NVIDIA OpenGL Extension Specifications

Name
EXT_bl end_m nnmax

Nanme Strings
GL_EXT_bl end_m nmax

Ver si on
$Date: 1995/03/31 04:40:34 $ $Revision: 1.3 $

Nunber
37

Dependenci es
None

Overvi ew
Bl endi ng capability is extended by respecifying the entire bl end
equation. Wile this docunent defines only two new equations, the
Bl endEquat i onEXT procedure that it defines will be used by subsequent
extensions to define additional blending equations.
The two new equations defined by this extension produce the mininum
(or maxi mun) col or conponents of the source and destination col ors.
Taking the maxi mumis useful for applications such as maxi num projection
i n medi cal i maging.

| ssues
* |"ve prefixed the ADD token with FUNC, to indicate that the blend
equation includes the paraneters specified by Bl endFunc. (The nmin
and max equations don't.) 1Is this necessary? Is it too ugly?
Is there a better way to acconplish the sanme thing?

New Procedures and Functions
voi d Bl endEquat i onEXT(enum node) ;

New Tokens

Accepted by the <node> paraneter of Bl endEquati onEXT:

FUNC_ADD EXT 0x8006
M N_EXT 0x8007
MAX_EXT 0x8008

Accept ed by the <pnane> paraneter of GetBool eanv, Getlntegerv,
Get Fl oatv, and Get Doubl ev:

BLEND_EQUATI ON_EXT 0x8009

42

NVIDIA OpenGL Extension Specifications EXT_blend_minmax

Additions to Chapter 2 of the G Specification (OpenG QOperation)
None

Additions to Chapter 3 of the G Specification (Rasterization)
None

Additions to Chapter 4 of the G. Specification (Per-Fragnent Operations
and the Franebuffer)

The GL Specification defines a single blending equation. This
extension introduces a blend equation node that is specified by calling
Bl endEquati onEXT with one of three enunerated values. The default
val ue FUNC ADD EXT specifies that the blending equation defined in
the GL Specification be used. This equation is
C =(C * 9 + (Cd* D

/ 1.0C >1.0

\ C C <=1.0

where Cs and Cd are the source and destination colors, and S and D are
as specified by Bl endFunc.

I f Bl endEquati onEXT is called with <node> set to M N_EXT, the
bl endi ng equati on becones

C=nin (Cs, Cd)

Finally, if BlendEquati onEXT is called with <npbde> set to MAX_EXT, the
bl endi ng equati on becones

C = max (Cs, Cd)

In all cases the blending equation is evaluated separately for each
col or component.

Additions to Chapter 5 of the G. Specification (Special Functions)
None

Additions to Chapter 6 of the GL Specification (State and State Requests)
None

Additions to the G.X Specification
None

GLX Protocol

A new GL rendering comand is added. The follow ng command is sent to the
server as part of a gl XRender request:

43

EXT_blend_minmax NVIDIA OpenGL Extension Specifications

Bl endEquat i onEXT

2 8 rendering command | ength
2 4097 rendering command opcode
4 ENUM node

Errors

I NVALI D ENUM i s generated by Bl endEquati onEXT if its single paraneter
is not FUNC_ADD_EXT, M N_EXT, or MAX_EXT.

| NVALI D OPERATION is generated if Bl endEquati onEXT is executed between
the execution of Begin and the correspondi ng execution to End.

New St at e
Get Val ue Get Command Type Initial Value Attribute
BLEND EQUATI ON_EXT GCetlntegerv Z3 FUNC_ADD EXT col or-buffer

New | npl enent ati on Dependent State

None

44

NVIDIA OpenGL Extension Specifications EXT_blend_subtract

Nanme
EXT_bl end_subt r act

Nanme Strings
GL_EXT bl end_subtract

Ver si on
$Dat e: 1995/ 03/31 04:40:39 $ $Revision: 1.4 $

Nurnber
38

Dependenci es
EXT_blend_m nnax affects the definition of this extension

Overvi ew
Two additional blending equations are specified using the interface
defined by EXT bl end_m nmax. These equations are simlar to the
default bl endi ng equation, but produce the difference of its left
and right hand sides, rather than the sum Inmage differences are
useful in many inmage processing applications.

New Procedures and Functions
None

New Tokens

Accepted by the <node> paraneter of Bl endEquati onEXT:

FUNC_SUBTRACT EXT 0x800A
FUNC_REVERSE_SUBTRACT EXT 0x800B

Additions to Chapter 2 of the G. Specification (OpenG. QOperation)
None

Additions to Chapter 3 of the G Specification (Rasterization)
None

Additions to Chapter 4 of the G. Specification (Per-Fragnent Operations
and the Franebuffer)

Two additional blending equations are defined. |[|f BlendEquati onEXT is
called with <node> set to FUNC_SUBTRACT_EXT, the bl ending equation
becones

45

EXT_blend_subtract NVIDIA OpenGL Extension Specifications

C =(Cs*9S) - (cd* D
/ 0.0C <0.0
\ C C >=0.0

where Cs and Cd are the source and destination colors, and S and D are
as specified by Bl endFunc.

I f Bl endEquati onEXT is called with <npbde> set to
FUNC_REVERSE SUBTRACT_EXT, the bl endi ng equati on becones

C =(Cd* D) - (Cs* 9
/ 0.0C <0.0
\ C C >=0.0

In all cases the blending equation is evaluated separately for each
col or conponent.

Additions to Chapter 5 of the G. Specification (Special Functions)
None

Additions to Chapter 6 of the GL Specification (State and State Requests)
None

Additions to the G.X Specification
None

GLX Protocol
None

Dependenci es on EXT_bl end_m nnax
If this extension is supported, but EXT _blend m nmax is not, then
this extension effectively defines the procedure Bl endEquati onEXT, its
par amet er FUNC ADD EXT, and the query target BLEND EQUATI ON_EXT, as
described in EXT_blend _mnmax. It is therefore as though
EXT_bl end_m nnax were al so supported, except that equations M N _EXT
and MAX EXT are not supported.

Errors
I NVALI D ENUM i s generated by Bl endEquati onEXT if its single paraneter
is not FUNC_ADD EXT, M N_EXT, MAX_EXT, FUNC_SUBTRACT_EXT, or
FUNC_REVERSE_SUBTRACT_EXT.

| NVALI D_OPERATI ON is generated if Bl endEquati onEXT i s executed between
the execution of Begin and the correspondi ng execution to End.

46

NVIDIA OpenGL Extension Specifications EXT_blend_subtract

New St ate
Get Val ue Get Command Type Initial Value Attribute
BLEND EQUATI ON_EXT GCetlntegerv Z5 FUNC_ADD EXT col or-buffer

New | mpl ement ati on Dependent State

None

47

EXT_compiled_vertex_array NVIDIA OpenGL Extension Specifications

XXX - Not conplete yet!!!

Name
EXT _conpil ed_vertex_array

Nane Strings
GL_EXT conpi |l ed_vertex_array

Ver si on
$Date: 1996/11/21 00:52:19 $ $Revision: 1.3 $

Nunber
97

Dependenci es
None

Overvi ew
Thi s extension defines an interface which allows static vertex array
data to be cached or pre-conpiled for nore efficient rendering. This
is useful for inplenmentations which can cache the transformed results
of array data for reuse by several DrawArrays, ArrayEl enent, or
Drawkl ements comands. It is also useful for inplenentations which
can transfer array data to fast nenory for nore efficient processing.
For exanple, rendering an Mby N nesh of quadrilaterals can be
acconpl i shed by setting up vertex arrays containing all of the
vertexes in the nmesh and issuing M DrawEl ements comands each of
whi ch operate on 2 * N vertexes. Each DrawEl ements command after
the first will share N vertexes with the precedi ng DrawEl enents
conmand. |If the vertex array data is |ocked while the Drawkl enents
conmands are executed, then OpenG. may be able to transform each
of these shared vertexes just once.

| ssues

* s conpil ed_vertex_array the right nane for this extension?

* Shoul d there be an inplenentation defined maxi num nunber of array
el enents which can be locked at a tine (i.e. MAX LOCKED ARRAY Sl ZE) ?

Probably not, the lock request can always be ignored with no resulting
change in functionality if there are insufficent resources, and allow ng
the GL to define this Iimt can nake things difficult for applications.

* Shoul d there be any restrictions on what state can be changed while
the vertex array data is |ocked?

Probably not. The G can check for state changes and invalidate

any cached vertex state that may be affected. This is likely to
cause a performance hit, so the preferred use will be to not change

48

NVIDIA OpenGL Extension Specifications EXT_compiled_vertex_array

state while the vertex array data is | ocked.
New Procedures and Functions

voi d LockArrayseEXT (int first, sizei count)
voi d Unl ockArraysEXT (void)

New Tokens

Accepted by the <pnane> paraneter of GetBool eanv, Getlntegerv,
Get Fl oatv, and Get Doubl ev:

ARRAY ELEMENT LOCK_FI RST_EXT 0x81A8
ARRAY ELEMENT LOCK_COUNT _EXT 0x81A9

Additions to Chapter 2 of the 1.1 Specification (QpenG. Operation)

After the discussion of InterleavedArrays, add a description of
array conpiling/l ocking.

The currently enabled vertex arrays can be |ocked with the command
LockArraysEXT. \When the vertex arrays are | ocked, the G

can conpile the array data or the transformed results of array
data associated with the currently enabled vertex arrays. The
vertex arrays are unlocked by the command Unl ockArraysEXT.

Bet ween LockArraysEXT and Unl ockArraysEXT the application

shoul d ensure that none of the array data in the range of

el enents specified by <first> and <count> are changed.

Changes to the array data between the execution of LockArraysEXT

and Unl ockArraysEXT commands nmay affect calls may affect DrawArrays,

ArrayEl enent, or Drawkl enents conmands in non-sequential ways.

Wil e using a conpiled vertex array, references to array el enents

by the commands DrawArrays, ArrayEl ement, or DrawEl enents which are

out side of the range specified by <first> and <count> are undefi ned.
Additions to Chapter 3 of the 1.1 Specification (Rasterization)

None

Additions to Chapter 4 of the 1.1 Specification (Per-Fragment Operations
and the Frane Buffer)

None
Additions to Chapter 5 of the 1.1 Specification (Special Functions)

LockArraysEXT and Unl ockArrayseEXT are not conplied into display lists
but are executed i medi ately.

Additions to Chapter 6 of the 1.1 Specification (State and State Requests)

None

49

EXT_compiled_vertex_array NVIDIA OpenGL Extension Specifications

Additions to the G.X Specification
XXX - Not complete yet!!!
GLX Protocol
XXX - Not conplete yet!!!
Errors

| NVALI D VALUE is generated if LockArraryseEXT paraneter <first> is |ess
than zero.

I N\VALI D VALUE is generated if LockArraysEXT paraneter <count> is |ess than
or equal to zero.

| N\VALI D OPERATION is generated if LockArraysiEXT is call ed between execution
of LockArraysEXT and correspondi ng execution of Unl ockArraysEXT.

| NVALI D_OPERATION is generated if Unl ockArrayseEXT is called w thout a
correspondi ng previous execution of LockArraysEXT.

| NVALI D_OPERATION is generated if LockArrayskEXT or Unl ockArrayseEXT is called
bet ween executi on of Begin and the correspondi ng execution of End.

New St at e
Initial
Get Val ue Get Command Type Val ue Attrib
ARRAY_ELEMENT_LOCK_FI RST_EXT Getlntegerv Z+ 0 client-vertex-array
ARRAY _ELEMENT _LOCK_COUNT_EXT Get I ntegerv Z+ 0 client-vertex-array

New | mpl ement ati on Dependent State

None

50

NVIDIA OpenGL Extension Specifications EXT_fog_coord

Name
EXT_fog_coord
Nanme Strings
GL_EXT _fog_coord
Cont act
Jon Leech, Silicon Graphics (ljp "at’ sgi.com
St at us
Shi ppi ng (version 1.6)
Ver si on
$Dat e: 1999/06/21 19:57:19 $ $Revision: 1.11 $
Nunber
149
Dependenci es

OpenG. 1.1 is required
The extension is witten against the OpenGL 1.2 Specification

Overvi ew
This extension allows specifying an explicit per-vertex fog
coordinate to be used in fog conputations, rather than using a
fragment depth-based fog equation

| ssues

* Shoul d the specified value be used directly as the fog wei ghting
factor, or in place of the z input to the fog equations?

As the z input; nore flexible and neets | SV requests.
* Do we want vertex array entry points? Interleaved array formats?

Yes for entry points, no for interleaved formats, follow ng the
argunent for secondary_col or.

* Wi ch scal ar types shoul d FogCoord accept? The full range, or just
the unsigned and float versions? At the noment it follows |ndex(),
whi ch takes unsigned byte, signed short, signed int, float, and
doubl e.

Since we're now speci fying a nunber which behaves |ike an
eye-space distance, rather than a [0,1] quantity, integer types
are | ess useful. However, restricting the conmands to fl oating
point forms only introduces sone nonorthogonality.

51

EXT_fog_coord NVIDIA OpenGL Extension Specifications

Restrict to only float and double, for now.

*

Interpolation of the fog coordinate nmay be perspective-correct or
not. Should this be affected by PERSPECTI VE_CORRECTI ON_HI NT,
FOG HI NT, or another to-be-defined hint?

PERSPECTI VE_CORRECTI ON_HI NT; this is already defined to affect
all interpolated paraneters. Admittedly this is a | oss of
orthogonality.

* Should the current fog coordinate be queryabl e?

Yes, but it’s not returned by feedback.

* Control the fog coordinate source via an Enable instead of a fog
par anmeter?

No. We might want to add nore sources |later.

* Shoul d the fog coordinate be restricted to non-negative val ues?
Per haps. Eye-coordi nate di stance of fragnents will be
non- negative due to clipping. Specifying explicit negative
coordinates nay result in very large conputed f val ues, although
they are defined to be clipped after conputation.

* Use existing DEPTH enum i nstead of FRAGVENT DEPTH? Change nane of
FRAGVENT_DEPTH EXT to FOG_FRAGVENT_ DEPTH EXT?

Use FRAGVENT_DEPTH EXT; FOG _FRAGMVENT_DEPTH EXT is somewhat
m sl eadi ng, since fragnment depth itself has no dependence on
f og.

New Procedures and Functions

voi d FogCoord[fd] EXT(T coord)

voi d FogCoord[fd] VEXT(T coord)

voi d FogCoor dPoi nt er EXT(enum type, sizei stride, void *pointer)
New Tokens

Accepted by the <pnanme> paraneter of Fogi and Fogf:

FOG_COORDI NATE_SOURCE_EXT 0x8450

Accepted by the <parane paraneter of Fogi and Fogf:

FOG_COORDI NATE_EXT 0x8451
FRAGVENT DEPTH_EXT 0x8452

Accepted by the <pnane> paraneter of GetBool eanv, Getlntegerv,
Get Fl oatv, and Get Doubl ev:

CURRENT_FOG_COORDI NATE_EXT 0x8453

FOG_COORDI NATE_ARRAY_TYPE_EXT 0x8454
FOG_COORDI NATE_ARRAY_STRI DE_EXT 0x8455

52

NVIDIA OpenGL Extension Specifications EXT_fog_coord

Accepted by the <pnane> paraneter of GetPointerv:
FOG_COORDI NATE_ARRAY_ POl NTER_EXT 0x8456

Accepted by the <array> paraneter of EnableCientState and
Di sabl ed i ent St at e:

FOG_COORDI NATE_ARRAY_EXT 0x8457
Additions to Chapter 2 of the Qpen@ 1.2 Specification (OpenG. Operation)

These changes describe a new current state type, the fog coordinate,
and the commuands to specify it:

- (2.6, p. 12) Second paragraph changed to:

"Each vertex is specified with two, three, or four coordinates.
In addition, a current normal, current texture coordi nates,
current color, and current fog coordinate may be used in
processi ng each vertex."

- 2.6.3, p. 19) First paragraph changed to

"The only GL commands that are allowed w thin any Begi n/ End
pairs are the commands for specifying vertex coordinates, vertex
colors, normal coordinates, texture coordinates, and fog

coordi nates (Vertex, Color, Index, Normal, TexCoord,
FogCoord)..."

- (2.7, p. 20) Insert the follow ng paragraph following the third
par agr aph descri bing current normals:
" The current fog coodinate is set using
voi d FogCoord[fd] EXT(T coord)
voi d FogCoord[fd] vVEXT(T coord)."

The | ast paragraph is changed to read:

"The state required to support vertex specification consists of
four floating-point nunbers to store the current texture
coordinates s, t, r, and g, one floating-point value to store
the current fog coordinate, four floating-point values to store
the current RGBA color, and one floating-point value to store
the current color index. There is no notion of a current vertex,
so no state is devoted to vertex coordinates. The initial values
of s, t, and r of the current texture coordinates are zero; the
initial value of g is one. The initial fog coordinate is zero.
The initial current normal has coordinates (0,0,1). The initial
RGBA color is (R GB,A =(1,1,1,1). The initial color index is
1."

- (2.8, p. 21) Added fog coordi nate comuand for vertex arrays:
Change first paragraph to read:

"The vertex specification conmands described in section 2.7
accept data in alnost any format, but their use requires many

53

EXT_fog_coord NVIDIA OpenGL Extension Specifications

conmmand executions to specify even sinple geonetry. Vertex data
may al so be placed into arrays that are stored in the client’s
address space. Blocks of data in these arrays may then be used
to specify nmultiple geonetric primtives through the execution
of a single G command. The client may specify up to seven
arrays: one each to store edge flags, texture coordinates, fog
coordi nates, colors, color indices, normals, and vertices. The
conmands”

Add to functions listed follow ng first paragraph
voi d FogCoor dPoi nt er EXT(enum type, sizei stride, void *pointer)
Add to table 2.4 (p. 22):

Conmmand Si zes Types

FogCoor dPoi nt er EXT 1 fl oat, doubl e

Starting with the second paragraph on p. 23, change to add
FOG_COORDI NATE_ARRAY_EXT:

"An individual array is enabled or disabled by calling one of

voi d Enabl e i ent St at e(enum arr ay)
voi d Di sabl eCl i ent State(enum array)

with array set to EDGE_FLAG ARRAY, TEXTURE COORD_ARRAY,
FOG_COORDI NATE_ARRAY_EXT, COLOR_ARRAY, | NDEX_ARRAY
NORMAL_ARRAY, or VERTEX ARRAY, for the edge flag, texture
coordi nate, fog coordi nate, color, color index, normal, or
vertex array, respectively.

The ith el enent of every enabled array is transferred to the GL
by calling

void ArrayEl enent(int i)

For each enabled array, it is as though the correspondi ng
comand fromsection 2.7 or section 2.6.2 were called with a
pointer to elenent i. For the vertex array, the corresponding
conmand i s Vertex<size><type>v, where <size> is one of [2,3,4],
and <type> is one of [s,i,f,d], corresponding to array types
short, int, float, and double respectively. The correspondi ng
conmands for the edge flag, texture coordinate, fog coordinate,
color, color, color index, and nornmal arrays are EdgeFl agv,
TexCoor d<si ze><t ype>v, FogCoord<type>v, Col or<size><type>v,

| ndex<type>v, and Nornal <type>v, respectively..."

Change pseudocode on p. 27 to disable fog coordinate array for
canned interleaved array fornats. After the lines

Di sabl ed i ent St at e(EDGE_FLAG_ARRAY) ;
Di sabl edl i ent St at e(| NDEX_ARRAY) ;

54

NVIDIA OpenGL Extension Specifications EXT_fog_coord

insert the line

Di sabl eCl i ent St at e(FOG_COORDI NATE_ARRAY_EXT) ;

Substitute "seven" for every occurence of "six" in the fina

par agr aph on p. 27.
- (2.12, p. 41) Add fog coordinate to the current rasterpos state.
Change the first sentence of the first paragraph to read

"The state required for the current raster position consists of
three wi ndow coordinates x w, y w, and z_w, a clip coordinate
w_c val ue, an eye coordi nate di stance, a fog coordinate, a valid
bit, and associated data consisting of a color and texture
coordi nates. "

Change the | ast paragraph to read

"The current raster position requires six single-precision
floating-point values for its x w, y w, and z_w w ndow
coordinates, its w.c clip coordinate, its eye coordinate

di stance, and its fog coordinate, a single valid bit, a color
(RGBA col or and color index), and texture coordinates for
associ ated data. In the initial state, the coordinates and
texture coordi nates are both (0,0,0,1), the fog coordinate is O,
the eye coordinate distance is 0, the valid bit is set, the
associ ated RGBA color is (1,1,1,1), and the associated col or
index color is 1. In RGBA node, the associated col or index

al ways has its initial value; in color index node, the RGBA
color always nmamintains its initial value."

- (3.10, p. 139) Change the second and third paragraphs to read

"This factor f may be conmputed according to one of three
equations: "

f
f
f

exp(-d*c) (3.24)
exp(-(d*c)"2) (3.25)
(e-c)/(e-5s) (3.26)

If the fog source (as defined below) is FRAGVENT_DEPTH_EXT, then
c is the eye-coordinate distance fromthe eye, (0 0 0 1) in eye
coordi nates, to the fragnent center. If the fog source is
FOG_COORDI NATE_EXT, then ¢ is the interpol ated val ue of the fog
coordinate for this fragment. The equation and the fog source,
along with either d or e and s, is specified with

voi d Fog{if}(enum pnane, T param;
voi d Fog{if}v(enum pnane, T parans);

I f <pname> is FOG_MODE, then <parans nust be, or <param> nust
point to an integer that is one of the synbolic constants EXP
EXP2, or LINEAR, in which case equation 3.24, 3.25, or 3.26,
respectively, is selected for the fog calculation (if, when 3.26
is selected, e = s, results are undefined). If <pname> is
FOG_COORDI NATE_SOURCE_EXT, then <paran® is or <params> points to

55

EXT_fog_coord NVIDIA OpenGL Extension Specifications

an integer that is one of the synbolic constants

FRAGVENT DEPTH_EXT or FOG COORDI NATE _EXT. |f <pname> is

FOG _DENSI TY, FOG START, or FOG END, then <param> is or <params>
points to a value that is d, s, or e, respectively. If dis
specified |l ess than zero, the error I NVALID VALUE results.”

- (3. 10,

p. 140) Change the |ast paragraph precedi ng section 3.11

to read

"The state required for fog consists of a three val ued integer
to select the fog equation, three floating-point values d, e,

and s,

an RGBA fog color and a fog col or index, a two-val ued

integer to select the fog coordinate source, and a single bit to
i ndi cate whether or not fog is enabled. In the initial state,
fog is disabled, FOG COORDI NATE SOURCE EXT is
FRAGVENT_DEPTH EXT, FOG MODE is EXP, d = 1.0, e = 1.0, and s =
0.0, Cf =(0,0,0,0) and i _f=0."

Addi ti ons

None

Addi ti ons

to Chapter 3 of the Open@ 1.2.1 Specification (Rasterization)

to Chapter 4 of the OpenCGL 1.2.1 Specification (Per-Fragnment

Qperations and the Frane Buffer)

None
Addi ti ons
None

Addi ti ons
Request s)

None
Addi ti ons
None
Addi ti ons

None

to Chapter 5 of the OpenCGL 1.2.1 Specification (Special Functions)

to Chapter 6 of the OpenCGL 1.2 Specification (State and State

to Appendix A of the OpenGL 1.2.1 Specification (Invariance)

to the GLX / WG / AG. Specifications

GLX Prot ocol

Two new GL rendering conmands are added. The foll owi ng commands are
sent to the server as part of a gl XRender request:

FogCoor df vEXT
2 8 rendering command | ength
2 4124 renderi ng comand opcode
4 FLOAT32 v[0]

56

NVIDIA OpenGL Extension Specifications EXT_fog_coord

FogCoor ddvEXT
2 12 rendering conmand | ength
2 4125 renderi ng comand opcode
8 FLOAT64 v[0]
Errors

I N\VALID ENUM i s generated i f FogCoordPoi nt er EXT paraneter <type> is
not FLOAT or DOUBLE

I NVALI D VALUE is generated if FogCoordPoi nter EXT paraneter <stride>
i s negative.

New St at e

(table 6.5, p. 195)

CGet Val ue Type Get Command Initial Value Description Sec Attribute

CURRENT_FOG_COORDI NATE_EXT R Get I nt egerv, 0 Current 2.7 current
Get Fl oatv fog coordinate

(table 6.6, p. 197)

Initial
Gt Vel ue Type Gt Gonmand Val ue Description Sec Atribute
FOG QOO0 NATE. ARRAY EBEXT B | sknabl ed Fal se Fog coord array enabl e 2.8 vertex-array
FGG GO0 NATE_ARRAY TYPE EXT Z3 Get I ntegerv ALCAT Type of fog coordinat e 2.8 vertex-array
FOG Q00RO NATE.ARRAY_STR CE BXT Z+ Get I ntegerv 0 Sride between fog coords 2.8 vertex-array
FOG QOO NATE ARRAY PFONTER EXT Y Get Roi nterv 0 Pointer to the fog coord 2.8 vertex-array

array

(table 6.8, p. 198)
Get Val ue Type Get Command Initial Value Description Sec Attribute

FOG_COORDI NATE_SOQURCE_EXT Z2 Get | nt egerv, FRAGVENT_DEPTH EXT Source of fog 3.10 fog
Get Fl oatv coordi nate for
fog cal cul ation

Revi sion History
* Revision 1.6 - Functionality conplete

* Revision 1.7-1.9 - Fix typos and add fields to bring up to date with
the new extension tenplate. No functionality changes.

57

EXT_packed_pixels NVIDIA OpenGL Extension Specifications

Nanme
EXT_packed_pi xel s
Nanme Strings
GL_EXT_packed_pi xel s
Ver si on
$Dat e: 1997/09/22 23:23:58 $ $Revision: 1.21 $
Nurber
23
Dependenci es

EXT _abgr affects the definition of this extension

EXT texture3D affects the definition of this extension
EXT_subtexture affects the definition of this extension
EXT_hi stogram affects the definition of this extension
EXT_convol ution affects the definition of this extension
SA color_table affects the definition of this extension
SA S textured4D affects the definition of this extension
EXT _cnyka affects the definition of this extension

Overvi ew

Thi s extension provides support for packed pixels in host nenory. A
packed pixel is represented entirely by one unsigned byte, one

unsi gned short, or one unsigned integer. The fields with the packed
pi xel are not proper machine types, but the pixel as a whole is. Thus
the pi xel storage nodes, including PACK SKIP_PI XELS, PACK ROW LENGTH,
PACK_SKI P_ROAS, PACK_| MAGE_HEI GHT_EXT, PACK_SKI P_I MAGES EXT,
PACK_SWAP_BYTES, PACK ALI GNMENT, and their unpacki ng counterparts all
work correctly w th packed pixels.

New Procedures and Functions
None
New Tokens

Accepted by the <type> paraneter of DrawPi xels, ReadPi xels, TexlnagelD,
Texl mage2D, Get Texl mage, Texl mage3DEXT, TexSubl magelDEXT,

TexSubl mage2DEXT, TexSubl nage3DEXT, Get Hi st ogranEXT, Get M nmaxEXT,
Convol utionFilter1DEXT, Convol utionFilter2DEXT, Convol utionFilter 3DEXT,
Get Convol utionFil ter EXT, Separabl eFilter2DEXT, Separabl eFilter 3DEXT,
Get Separ abl eFi | t er EXT, Col or Tabl eSG@, GCet Col or Tabl eSA, Texl magedDSA S,
and TexSubl nage4DSd S:

UNSI GNED_BYTE_3_3_2_EXT 0x8032
UNSI GNED_SHORT 4_4 4 4 EXT 0x8033
UNSI GNED_SHORT 5 5 5 1 _EXT 0x8034
UNSI GNED_| NT_8_8_8_8_EXT 0x8035
UNSI GNED_I NT_10_10_10_2_EXT 0x8036

58

NVIDIA OpenGL Extension Specifications EXT_packed_pixels

Additions to Chapter 2 of the 1.0 Specification (OQpenG Operation)
None
Additions to Chapter 3 of the 1.0 Specification (Rasterization)

The five tokens defined by this extension are added to Table 3. 4:

<type> Par anet er Cor r espondi ng Speci al
Token Val ue GL Data Type Interpretation
UNSI GNED_BYTE ubyt e No
BYTE byte No

UNSI GNED_SHORT ushort No
SHORT short No

UNSI GNED | NT ui nt No

| NT i nt No
FLOAT fl oat No

Bl TMAP ubyte Yes
UNSI GNED_BYTE_3_3_2_ EXT ubyt e Yes
UNSI GNED SHORT 4 4 4 4 EXT ushort Yes
UNSI GNED_SHORT 5 5 5 1 EXT ushort Yes
UNSI GNED_I NT_8_8_8_8_ EXT ui nt Yes
UNSI GNED_I NT_10_10_10_2_EXT uint Yes

Tabl e 3.4: DrawPi xel s and ReadPi xel s <type> paraneter values and the
corresponding GL data types. Refer to table 2.2 for definitions of
GL data types. Special interpretations are described near the end
of section 3.6.3.

[Section 3.6.3 of the GL Specification (Rasterization of Pixel
Rectangles) is rewitten as follows:]

3.6.3 Rasterization of Pixel Rectangles

The process of draw ng pixels encoded in host nenory is diagranmed in
Figure 3.7. W describe the stages of this process in the order in which
they occur.

Pi xel s are drawn using

voi d DrawPi xel s(sizei w dth,
si zei hei ght,
enum f or mat ,
enum t ype,
voi d* data);

<format> is a synbolic constant indicating what the values in nenory
represent. <wi dth> and <hei ght> are the width and hei ght, respectively,
of the pixel rectangle to be drawmn. <data> is a pointer to the data to
be drawn. These data are represented with one of seven G data types,
specified by <type>. The correspondence between the thirteen <type>
token values and the GL data types they indicate is given in Table 3.4.
If the GL is in color index node and <format> is not one of COLOR | NDEX,
STENCI L_I NDEX, or DEPTH_COVMPONENT, then the error | NVALI D_OPERATI ON
occurs. Sone additional constraints on the conbinations of <formt>

59

EXT_packed_pixels NVIDIA OpenGL Extension Specifications

and <type> values that are accepted are di scussed bel ow.
Unpacki ng

Data are taken from host nenory as a sequence of signed or unsigned bytes
(GL data types byte and ubyte), signed or unsigned short integers (GL data
types short and ushort), signed or unsigned integers (G. data types int
and uint), or floating-point values (G. data type float). These elenents
are grouped into sets of one, two, three, four, or five values, depending
on the <format>, to forma group. Table 3.5 sunmarizes the format of
groups obtained fromnenory. It also indicates those formats that yield

i ndi ces and those that yield conponents.

Tar get
For mat Nane Buf f er El ement Meani ng and Order
COLOR_| NDEX Col or Col or index
STENCI L_ I NDEX St enci | Stencil index
DEPTH_COVPONENT Dept h Dept h conponent
RED Col or R conponent
GREEN Col or G conponent
BLUE Col or B conponent
ALPHA Col or A conponent
RGB Col or R, G B conponents
RGBA Col or R, G B, A conponents
ABGR_EXT Col or A, B, G R components
CMYK_EXT Col or Cyan, Magenta, Yellow, Black conponents
CMYKA_EXT Col or Cyan, Magenta, Yellow, Black, A conponents
LUM NANCE Col or Lum nance conponent
LUM NANCE_ALPHA Col or Lum nance, A conponents

Tabl e 3.5: DrawPi xel s and ReadPi xel s formats. The third col um
gives a description of and the nunber and order of elenments in a

group.

By default the values of each GL data type are interpreted as they woul d
be specified in the | anguage of the client’s G. binding. |If

UNPACK _SWAP_BYTES is set to TRUE, however, then the values are
interpreted with the bit orderings nodified as per the table below. The
nodi fied bit orderings are defined only if the G. data type ubyte has
eight bits, and then for each specific G. data type only if that type

is represented with 8, 16, or 32 bits.

El ement Def aul t

Si ze Bit Odering Modified Bit Ordering

8-bit [7..0] [7..0]

16-bit [15..0] [7..0] [15..8]

32-bit [31..0] [7..0] [15..8] [23..16] [31..24]

Tabl e: Bit ordering nodification of elenents when UNPACK SWAP_BYTES
is TRUE. These reorderings are defined only when G. data type ubyte
has 8 bits, and then only for GL data types with 8, 16, or 32 bits.

The groups in nenory are treated as being arranged in a rectangle. This

rectangl e consists of a series of rows, with the first elenent of the
first group of the first row pointed to by the pointer passed to

60

NVIDIA OpenGL Extension Specifications EXT_packed_pixels

DrawPi xel s. |If the value of UNPACK ROWLENGIH is not positive, then the
nunber of groups in a rowis <w dth> otherw se the nunber of groups is
UNPACK ROW LENGTH. If the first element of the first rowis at |ocation
p in menory, then the location of the first element of the Nth rowis

p + Nk

where N is the row nunber (counting fromzero) and k is defined as

/ nl s >= a
k = <
\ als * ceiling(snl/a) s <a
where n is the nunber of elenents in a group, | is the nunber of groups
inarow ais the value of UNPACK ALI GNMENT, and s is the size,
in units of GL ubytes, of an elenent. |If the nunber of bits per

element is not 1, 2, 4, or 8 tines the nunber of bits in a G. ubyte,
then k = nl for all values of a.

There is a nmechanismfor selecting a sub-rectangle of groups froma

| arger containing rectangle. This nmechanismrelies on three integer

par amet ers: UNPACK_ROW LENGTH, UNPACK_SKI P_ROAS, and UNPACK_SKI P_PI XELS.
Bef ore obtaining the first group frommenory, the pointer supplied to
DrawPi xel s is effectively advanced by

UNPACK_SKI P_PI XELS * n + UNPACK SKI P_RON5 * k

el enents. Then <w dt h> groups are obtai ned from contiguous el ements
in menory (wthout advancing the pointer), after which the pointer is
advanced by k el enents. <height> sets of <w dth> groups of values are
obtained this way. See Figure 3.8.

Calling DrawPi xel s with a <type> of UNSI GNED BYTE 3_3_2,

UNSI GNED_SHORT_4_4 4 4, UNSI GNED_SHORT 5 5 5_1, UNSI GNED_ I NT_8_ 8 8_8,
or UNSIGNED INT_10 10 10 2 is a special case in which all the el enents
of each group are packed into a single unsigned byte, unsigned short,

or unsigned int, depending on the type. The nunber of elements per
packed pixel is fixed by the type, and nust match the nunber of

el ements per group indicated by the <fornmat> paraneter. (See the table

bel ow.) The error I NVALI D OPERATION is generated if a m smatch occurs.

GL Nurnber
<type> Par anet er Dat a of Mat chi ng
Token Nane Type El enents Pixel Formats
UNSI GNED_BYTE_3_3_2_ EXT ubyt e 3 RGB
UNSI GNED SHORT 4 4 4 4 EXT ushort 4 RGBA, ABGR_EXT, CMYK_EXT
UNSI GNED_SHORT_5_5_5_ 1 EXT ushort 4 RGBA, ABGR_EXT, CMYK_EXT
UNSI GNED_I NT_8_8_8_8_ EXT ui nt 4 RGBA, ABGR_EXT, CMYK_EXT
UNSI GNED_I NT_10_10_10_2_EXT uint 4 RGBA, ABGR_EXT, CMYK_EXT

Bitfield locations of the first, second, third, and fourth el ements

of each packed pixel type are illustrated in the diagrans bel ow Each
bitfield is interpreted as an unsigned integer value. |If the base G
type is supported with nore than the m ninmumprecision (e.g. a 9-bit
byte) the packed el enents are right-justified in the pixel

61

EXT_packed_pixels NVIDIA OpenGL Extension Specifications

UNSI GNED_BYTE_3_3_2_EXT:

Fommmem oo Fommmm e oo oo o +
Fommmmm oo o meomon R +
first second third

el enent el enent el enent

first second third fourth
el ement el ement el ement el ement

e e e e oo+

[[[[[

B B B +---+
first second third fourth
el enent el enent el enent el enent

first second third
el enent el enent el enent

UNSI GNED_I NT_10_10_10_2_EXT:

first second third
el ement el ement el ement

fourth
el enent

fourth
el ement

The assignnment of elenents to fields in the packed pixel is as

described in the tabl e bel ow

First Second Third Fourth
For mat El emrent El enent El enent El enent
RGB red green bl ue
RGBA red green bl ue al pha
ABGR_EXT al pha bl ue green red
CMYK_EXT cyan magent a yel | ow bl ack

62

NVIDIA OpenGL Extension Specifications EXT_packed_pixels

Byte swapping, if enabled, is performed before the elenents are
extracted fromeach pixel. The above discussions of row | ength and

i mge extraction are valid for packed pixels, if "group" is substituted
for "elenment"” and the nunber of el enents per group is understood to

be one.

Calling DrawPi xel s with a <type> of BITMAP is a special case in which
the data are a series of G ubyte values. Each ubyte value specifies
8 1-bit elenents with its 8 least-significant bits. The 8 single-bit
el enents are ordered fromnost significant to least significant if the
val ue of UNPACK LSB FIRST is FALSE, otherw se, the ordering is from

| east significant to nost significant. The values of bits other than
the 8 least significant in each ubyte are not significant.

The first elenent of the first rowis the first bit (as defined above)
of the ubyte pointed to by the pointer passed to DrawPi xels. The first
el ement of the second rowis the first bit (again as defined above) of
the ubyte at location p+k, where k is computed as

k = a * ceiling(nl/8a)

There is a mechanismfor selecting a sub-rectangle of elenments from
a BITMAP image as well. Before obtaining the first element from nenory,
the pointer supplied to DrawPi xels is effectively advanced by

UNPACK_SKI P_ROWS * k

ubytes. Then UNPACK SKIP_PI XELS 1-bit elements are ignored, and the
subsequent <width> 1-bit el enments are obtai ned, wi thout advancing the
ubyte pointer, after which the pointer is advanced by k ubytes. <height>
sets of <width> elenents are obtained this way.

Conversion to floating-point

This step applies only to groups of conponents. It is not perforned on
i ndices. Each elenent in a group is converted to a floating-point val ue
according to the appropriate formula in Table 2.4 (section 2.12).

Unsi gned integer bitfields extracted from packed pixels are interpreted
using the fornul a

f=c/ ((2**N)-1)

where c is the value of the bitfield (interpreted as an unsi gned
integer), Nis the nunber of bits in the bitfield, and the division is
performed in floating point.

[End of changes to Section 3.6. 3]

If this extension is supported, all commands that accept pixel data
al so accept packed pixel data. These commands are DrawPi xel s,

Tex|l magelD, Texl mage2D, Texl| mage3DEXT, TexSubl nagelDEXT,

TexSubl mage2DEXT, TexSubl nage3DEXT, Convol uti onFilter 1DEXT,

Convol uti onFi | t er 2DEXT, Convol uti onFi |l ter3DEXT, Separabl eFilter 2DEXT,
Separ abl eFi | t er 3DEXT, Col or Tabl eSA, Texl mage4DSA S, and

TexSubl mage4DSA S.

63

EXT_packed_pixels NVIDIA OpenGL Extension Specifications

Additions to Chapter 4 of the 1.0 Specification (Per-Fragnent Qperations
and the Franebuffer)

[Make the foll owi ng changes to Section 4.3.2 (Reading Pixels):]
Fi nal Conversion

For an index, if the <type> is not FLOAT, final conversion consists of
masking the index with the value given in Table 4.6; if the <type> is
FLOAT, then the integer index is converted to a G. float data val ue.
For a conponent, each conponent is first clanped to [0,1]. Then,

the appropriate conversion fornmula from Table 4.7 is applied to the
conponent .

<type> Paraneter |ndex Mask

UNSI GNED_BYTE 2%*8 - 1
Bl TMAP 1

BYTE 2%%7 - 1
UNS| GNED_SHORT ~ 2**16 - 1
SHORT 2%%15 - 1
UNSI GNED_| NT 2%%32 - 1
| NT 2**31 - 1

Tabl e 4.6: Index nasks used by ReadPi xels. Floating point data
are not masked.

<type> GL Dat a Conponent

Par anet er Type Conver si on Formul a

UNSI GNED_BYTE ubyt e c = ((2**8)-1)*f

BYTE byte c = (((2**8)-1)*f-1)/2
UNSI GNED_SHORT ushort c = ((2**16)-1) *f

SHORT short c = (((2**16)-1)*f-1)/2
UNSI GNED_I NT ui nt c = ((2**32)-1)*f

| NT i nt c = (((2**32)-1)*f-1)/2
FLOAT fl oat c =f

UNSI GNED BYTE 3 3 2 EXT ubyt e c = ((2**N)-1)*f

UNSI GNED_SHORT_4_4 4 4 EXT ushort c = ((2**N)-1)*f

UNSI GNED_SHORT 5 5 5 1 EXT ushort c = ((2**N)-1)*f

UNSI GNED_I NT_8_8_8_8_ EXT ui nt c = ((2**N)-1)*f

UNSI GNED | NT_10_10_10 2 _EXT uint c = ((2**N)-1)*f

Tabl e 4.7: Reversed conponent conversions - used when conponent data
are being returned to client nenory. Color, normal, and depth
conponents are converted fromthe internal floating-point
representation (f) to a datumof the specified GL data type (c) using
the equations in this table. Al arithnmetic is done in the interna
floating point format. These conversions apply to conponent data
returned by GL query commands and to conponents of pixel data returned
to client nenory. The equations remain the sane even if the

i mpl ement ed ranges of the GL data types are greater than the nininum
required ranges. (Refer to table 2.2.) Equations with N as the
exponent are performed for each bitfield of the packed data type,
with N set to the nunber of bits in the bitfield.

64

NVIDIA OpenGL Extension Specifications EXT_packed_pixels

Pl acenent in dient Menory
Groups of elements are placed in nenory just as they are taken from nenory
for DrawPi xels. That is, the ith group of the jth row (corresponding to
the ith pixel inthe jth row) is placed in nenory nmust where the ith group
of the jth row would be taken fromfor DrawPi xels. See Unpacki ng under
section 3.6.3. The only difference is that the storage node paraneters
whose names begin with PACK are used instead of those whose names begin
wi th UNPACK .
[End of changes to Section 4. 3.2]
If this extension is supported, all conmands that return pixel data
al so return packed pixel data. These commands are ReadPi xel s,
Get Texl mage, Get Hi st ogranEXT, Get M nnmaxEXT, Get Convol utionFilterEXT
Get Separ abl eFi | t er EXT, and Get Col or Tabl eSAd .

Additions to Chapter 5 of the 1.0 Specification (Special Functions)
None

Additions to Chapter 6 of the 1.0 Specification (State and State Requests)
None

Additions to the G.X Specification
None

GLX Protocol
None

Dependenci es on EXT_abgr

I f EXT_abgr is not inplenented, then the references to ABGR EXT in this
file are invalid, and should be ignored.

Dependenci es on EXT _texture3D

If EXT_texture3D is not inplenented, then the references to
Texl mage3DEXT in this file are invalid, and should be ignored.

Dependenci es on EXT_subtexture
I f EXT_subtexture is not inplenented, then the references to
TexSubl magelDEXT, TexSubl nage2DEXT, and TexSubl mage3DEXT in this file
are invalid, and shoul d be ignored.

Dependenci es on EXT_hi st ogram
I f EXT_histogramis not inplenented, then the references to
Get Hi st ogr anEXT and Get M nmaxEXT in this file are invalid, and should be
i gnor ed.

Dependenci es on EXT_convol ution

65

EXT_packed_pixels NVIDIA OpenGL Extension Specifications

I f EXT_convolution is not inplenented, then the references to

Convol utionFilter1DEXT, Convol utionFilter2DEXT, Convol utionFilter 3DEXT,
Get Convol utionFil ter EXT, Separabl eFilter2DEXT, Separabl eFilter 3DEXT, and
Get Separabl eFilterEXT in this file are invalid, and should be ignored.

Dependenci es on SA col or _table

If SG@ _color_table is not inplenmented, then the references to
Col or Tabl eSG@ and GetCol orTableSE@ in this file are invalid, and should
be i gnored.

Dependenci es on SA S texture4D

If SG@S texturedD is not inplenented, then the references to
Tex|l magedDSA S and TexSubl nege4dDSA S in this file are invalid, and should
be i gnored.

Dependenci es on EXT_cnyka

If EXT_cnyka is not inplenented, then the references to CMYK EXT and
CMYKA EXT in this file are invalid, and should be ignored.

Errors

[For the purpose of this enuneration of errors, GenericPixel Function
represents any OpenG. function that accepts or returns pixel data, using
paraneters <type> and <format> to define the type and format of that
data. Currently these functions are DrawPi xel s, ReadPi xel s, Texl magelD,
Texl mage2D, Get Texl mage, Texl mage3DEXT, TexSubl magelDEXT,

TexSubl mage2DEXT, TexSubl nage3DEXT, Get Hi st ogranEXT, Get M nmaxEXT,

Convol uti onFi | t er 1DEXT, Convol uti onFilter2DEXT, Convol uti onFilter 3DEXT,
Get Convol utionFilter EXT, Separabl eFilter2DEXT, Separabl eFi |t er 3DEXT,

Get Separ abl eFi | t er EXT, Col or Tabl eSE, Cet Col or Tabl eSG, Texl nage4DSA S,
and TexSubl nage4DSd S. |

| NVALI D_OPERATI ON i s generated by GenericPi xel Function if its <type>
paranmeter is UNSIGNED BYTE 3 3 2 EXT and its <format> paraneter does not
specify three conponents. Currently the only 3-component format is RGB.
| NVALI D_OPERATI ON i s generated by GenericPi xel Function if its <type>

UNSI GNED_INT_8 8 8 8 EXT, or UNSIGNED INT_10 10 10 2 EXT and its

<f ormat > paraneter does not specify four conponents. Currently the only
4-conponent formats are RGBA, ABGR EXT, and CMYK EXT.

New St at e
None
New | npl enent ati on Dependent State

None

66

NVIDIA OpenGL Extension Specifications EXT_paletted_texture

Nanme
EXT_pal etted_texture
Nanme Strings
GL_EXT paletted_texture
Ver si on
$Dat e: 1997/06/12 01:07:42 $ $Revision: 1.2 $
Nurnber
78
Dependenci es

GL_EXT pal etted texture shares routines and enunerants wth

G._SA color_table with the minor nodification that EXT replaces SGA.

In all other ways these calls should function in the same manner and the
enuner ant val ues should be identical. The portions of

GL_SA color _table that are used are:

Col or Tabl eSA@, GCet Col or Tabl eSE@, GCet Col or Tabl ePar anet eri vS43 ,
Cet Col or Tabl ePar anet er f vSG .

COLOR_TABLE _FORVAT _SG, COLOR TABLE W DTH S@ ,

COLOR _TABLE RED SI ZE_ SG, COLOR TABLE GREEN SI ZE Sd,

COLOR TABLE BLUE SIZE SE@, COLOR TABLE ALPHA SIZE S@,

COLOR TABLE _LUM NANCE SI ZE SE, COLOR TABLE I NTENSITY_SIZE S@.

Portions of GL_SGA color _table which are not used in
GL_EXT paletted_texture are:

CopyCol or Tabl eSA@, Col or Tabl ePar aneteri vSA3,

Col or Tabl ePar anet erf vSQ .

COLOR _TABLE_SGA, POST_CONVOLUTI ON_COLOR TABLE S@,

POST_COLOR MATRI X_COLOR TABLE_SGI, PROXY_COLOR TABLE_Sd ,
PROXY_PQOST_CONVOLUTI ON_COLOR _TABLE_S@,

PROXY_PCST_COLOR_MATRI X COLOR TABLE_SGE, COLOR TABLE SCALE_Sd,
COLOR _TABLE_BI AS_Sd .

EXT _paletted_texture can be used in conjunction with EXT_texture3D.
EXT pal etted texture nodifies Texl nage3DEXT to accept pal etted i mage
data and all ows TEXTURE 3D EXT and PROXY_TEXTURE 3D EXT to be used a
targets in the color table routines. |If EXT texture3D is unsupported
then references to 3D texture support in this spec are invalid and
shoul d be ignored.

Overvi ew

EXT _pal etted texture defines new texture formats and new calls to
support the use of paletted textures in OpenG.. A paletted texture is
defined by giving both a palette of colors and a set of inage data which
is conposed of indices into the palette. The paletted texture cannot
function properly without both pieces of information so it increases the
work required to define a texture. This is offset by the fact that the

67

EXT_paletted_texture NVIDIA OpenGL Extension Specifications

overal | anmpunt of texture data can be reduced dramatically by factoring
redundant information out of the logical view of the texture and placing
it inthe palette

Pal etted textures provide several advantages over full-col or textures:

* As mentioned above, the anmpbunt of data required to define a

texture can be greatly reduced over what woul d be needed for full-color
specification. For exanple, consider a source texture that has only 256
distinct colors in a 256 by 256 pixel grid. Full-color representation
requires three bytes per pixel, taking 192K of texture data. By putting
the distinct colors in a palette only eight bits are required per pixel
reduci ng the 192K to 64K plus 768 bytes for the palette. Now add an

al pha channel to the texture. The full-color representation increases
by 64K while the paletted version would only increase by 256 bytes.

This reduction in space required is particularly inportant for hardware
accel erators where texture space is linmited.

* Paletted textures allow easy reuse of texture data for inmges

which require many simlar but slightly different col ored objects.
Consider a driving sinmulation with heavy traffic on the road. Many of
the cars will be sinmilar but with different col or schemes. |If
full-color textures are used a separate texture would be needed for each
color schene, while paletted textures allow the sane basic index data to
be reused for each car, with a different palette to change the fina

col ors.

* Paletted textures also allow use of all the palette tricks

devel oped for paletted displays. Sinple aninmation can be done, along
with strobing, glowi ng and other palette-cycling effects. Al of these
techni ques can enhance the visual richness of a scene with very little
dat a.

Procedures and Functi ons

voi d Col or Tabl eEXT(
enum t ar get

enum i nt er nal For mat ,
sizei wdth,
enum f or mat
enum t ype,

const void *data);

voi d Col or SubTabl eEXT(
enum t ar get

sizei start,

si zei count,
enum f or mat ,
enum t ype,

const void *data);

voi d Get Col or Tabl eEXT(
enum t ar get
enum f or mat ,
enum t ype,

void *data);

68

NVIDIA OpenGL Extension Specifications EXT_paletted_texture

voi d Get Col or Tabl ePar anet er i VEXT(
enum t ar get

enum pnane,

i nt *parans);

voi d Get Col or Tabl ePar anet er f vEXT(
enum t ar get

enum pnane,

float *parans);

New Tokens

Accepted by the internal fornmat paraneter of TexlnagelD, Texlmage2D and
Tex| mage3DEXT:

COLOR_| NDEX1_EXT 0Xx80E2
COLOR_| NDEX2_EXT 0x80E3
COLOR_| NDEX4_EXT 0x80E4
COLOR_| NDEX8_EXT 0x80E5
COLOR_| NDEX12_EXT 0x80E6
COLOR_| NDEX16_EXT 0Xx80E7

Accepted by the pnane paraneter of GetCol or Tabl eParanet eri vEXT and
Get Col or Tabl ePar anet er f VEXT:

COLOR_TABLE_FORMAT_EXT 0x80D8
COLOR_TABLE_W DTH_EXT 0x80D9
COLOR_TABLE_RED_SI ZE_EXT 0x80DA
COLOR_TABLE_GREEN_SI ZE_EXT 0x80DB
COLOR_TABLE_BLUE_SI ZE_EXT 0x80DC
COLOR_TABLE_ALPHA_SI ZE_EXT 0x80DD
COLOR_TABLE_LUM NANCE_SI ZE_EXT 0x80DE
COLOR_TABLE_| NTENSI TY_SI ZE_EXT 0x80DF

Accepted by the val ue paraneter of GetTexlLevel Paraneter{if}v:
TEXTURE_| NDEX_SI ZE_EXT 0x80ED

Additions to Chapter 2 of the G. Specification (OpenG. Operation)
None
Additions to Chapter 3 of the G Specification (Rasterization)

Section 3.6.4, 'Pixel Transfer Operations,’ subsection ’'Color |ndex
Lookup,’

Point two is nodified from’' The groups will be | oaded as an

image into texture menory’ to 'The groups will be | oaded as an i mage
into texture menory and the internal format parameter is not one of the
color index formats fromtable 3.8.’

Section 3.8, 'Texturing,' subsection 'Texture Inmage Specification' is
nmodi fi ed as foll ows:

The portion of the first paragraph discussing interpretation of fornmat,
type and data is split fromthe portion discussing target, width and

hei ght. The target, width and hei ght section now ends with the sentence
"Argunments width and height specify the image’'s wi dth and hei ght.’

69

EXT_paletted_texture NVIDIA OpenGL Extension Specifications

The format, type and data section is noved under a subheader ’'Direct
Col or Texture Formats’ and begins with "If internalformat is not one of
the color index formats fromtable 3.8, and continues with the existing
text through the internal format di scussion

After that section, a new section 'Paletted Texture Formats’ has the
t ext:

If format is given as COLOR INDEX then the inmmge data is

conposed of integer values representing indices into a table of colors
rather than colors thenselves. |If internalformat is given as one of the
color index formats fromtable 3.8 then the texture will be stored
internally as indices rather than undergoi ng i ndex-to-RGBA mappi ng as

woul d previously have occurred. In this case the only valid values for
type are BYTE, UNSI GNED BYTE, SHORT, UNSI GNED _SHORT, | NT and
UNSI GNED_| NT.

The inmage data i s unpacked frommenory exactly as for a

DrawPi xel s conmand with format of COLOR INDEX for a context in color
index node. The data is then stored in an internal format derived from
internalformat. In this case the only |egal values of internalformat
are COLOR_| NDEX1_EXT, COLOR_ | NDEX2_EXT, COLOR | NDEX4 EXT,

COLOR | NDEX8 EXT, COLOR I NDEX12 EXT and COLOR | NDEX16 EXT and the

i nternal conponent resolution is picked according to the index
resolution specified by internalformat. Any excess precision in the
data is silently truncated to fit in the internal conponent precision

An application can determi ne whether a particul ar

i npl enent ati on supports a particular paletted format (or any pal etted
formats at all) by attenpting to use the paletted format with a proxy
target. TEXTURE INDEX SIZE EXT will be zero if the inplenmentation
cannot support the texture as given

An application can determine an inplenentation’ s desired

format for a particular paletted texture by nmaking a Texlnmage call with
COLOR INDEX as the internalformat, in which case target nmust be a proxy
target. After the call the application can query
TEXTURE | NTERNAL_FORMAT to determ ne what internal format the

i npl enent ati on suggests for the texture i mage paraneters.
TEXTURE | NDEX_SI ZE EXT can be queried after such a call to determi ne the
suggested i ndex resolution nunerically. The index resolution suggested
by the inplenmentati on does not have to be as large as the input data
precision. The resolution may also be zero if the inplementation is
unabl e to support any paletted format for the given texture inage.

Table 3.8 should be augnented with a colum titled 'Index bits.” Al
exi sting formats have zero index bits. The following formats are added
with zeroes in all existing colums:

Name I ndex bits
COLOR | NDEX1_EXT 1

COLOR_| NDEX2_EXT 2

COLOR_| NDEX4_EXT 4

COLOR_| NDEX8_EXT 8

COLOR | NDEX12_EXT 12

COLOR | NDEX16_EXT 16

70

NVIDIA OpenGL Extension Specifications EXT_paletted_texture

At the end of the discussion of level the follow ng text should be
added:

Al'l m prmapping |l evels share the same palette. [If levels
are created with different precision indices then their internal formats
will not match and the texture will be inconsistent, as discussed above

In the discussion of internalformat for CopyTexlnage{12}D, at end of the
sentence specifying that 1, 2, 3 and 4 are illegal there should also be
a nention that paletted internalformat values are illegal

At the end of the width, height, format, type and data section under
TexSubl mage t here should be an additional sentence:

If the target texture has an color index internal fornmat
then format may only be COLOR | NDEX

At the end of the first paragraph describing TexSubl mage and
CopyTexSubl nage the followi ng sentence should be added:

If the target of a CopyTexSublnmage is a paletted texture
i mge then | NVALI D_OPERATI ON i s returned.

After the Alternate | mage Specification Commands section, a new 'Palette
Speci fication Conmands’ section should be added.

Pal etted textures require palette information to
translate indices into full colors. The comrand

voi d Col or Tabl eEXT(enum target, enuminternal format, sizei w dth,
enum format, enumtype, const void *data);

is used to specify the format and size of the palette

for paletted textures. target specifies which texture is to have its
pal ette changed and may be one of TEXTURE 1D, TEXTURE 2D
PROXY_TEXTURE_1D, PROXY_TEXTURE 2D, TEXTURE 3D EXT or
PROXY_TEXTURE_3D EXT. internal fornmat specifies the desired fornmat and
resolution of the palette when in its internal form internalformt can
be any of the non-index values |egal for Texlnmage internalfornmat

al t hough i npl enentations are not required to support palettes of al
possible formats. w dth controls the size of the palette and nust be a
power of two greater than or equal to one. format and type specify the
nunber of conponents and type of the data given by data. format can be
any of the formats |legal for DrawPi xel s al though inpl enentations are not
required to support all possible formats. type can be any of the types
| egal for DrawPi xel s except GL_BI TMAP

Data is taken from menory and converted just as if each

palette entry were a single pixel of a 1D texture. Pixel unpacking and
transfer nodes apply just as with texture data. After unpacking and
conversion the data is translated into a internal format that matches
the given format as closely as possible. An inplenentation does not,
however, have a responsibility to support nmore than one precision for

t he base fornmats.

If the palette’s width is greater than than the range of
the color indices in the texture data then sone of the palettes entries

71

EXT_paletted_texture NVIDIA OpenGL Extension Specifications

will be unused. |If the palette’s width is I ess than the range of the
color indices in the texture data then the nost-significant bits of the
texture data are ignored and only the appropriate nunmber of bits of the
i ndex are used when accessing the palette.

Speci fying a proxy target causes the proxy texture’'s

palette to be resized and its paraneters set but no data is transferred
or accessed. |If an inplenmentation cannot handl e the palette data given
in the call then the color table width and conponent resol utions are set
to zero.

Portions of the current palette can be replaced with

voi d Col or SubTabl eEXT(enum target, sizei start, sizei count,

enum format, enumtype, const void *data);

target can be any of the non-proxy values |egal for

Col or Tabl eEXT. start and count control which entries of the palette are
changed out of the range allowed by the internal fornmat used for the
palette indices. count is silently clanped so that all nodified entries
all within the legal range. format and type can be any of the val ues

| egal for Col orTabl eEXT. The data is treated as a 1D texture just as in
Col or Tabl eEXT.

In the 'Texture State and Proxy State’ section the sentence fragnent
begi nning 'six integer values describing the resolutions...’ should be
changed to refer to seven integer values, with the seventh being the

i ndex resol ution.

Pal ette data should be added in as a third category of texture state.

Af

Th
pr

Th
th

Additi
and th

None

ter the discussion of properties, the follow ng should be added:

Next there is the texture palette. Al textures have a

palette, even if their internal format is not color index. A texture's
palette is initially one RGBA elenent with all four conponents set to
1.0.

e sentence nentioning that proxies do not have imge data or
operties should be extended with 'or palettes.’

e sentence beginning 'If the texture array is too |large’ describing
e effects of proxy failure should change to read:

If the inplenmentation is unable to handle the texture

i mage data the proxy width, height, border w dth and conponent
resolutions are set to zero. This situation can occur when the texture
array is too large or an unsupported paletted format was requested.

ons to Chapter 4 of the GL Specification (Per-Fragment Operations
e Franebuffer)

Additions to Chapter 5 of the G. Specification (Special Functions)

None

72

NVIDIA OpenGL Extension Specifications EXT_paletted_texture

Additions to Chapter 6 of the GL Specification (State and State
Request s)

In the section on GetTexl mage, the sentence saying ' The conponents are
assigned anong R, G B and A according to’ should be changed to be

If the internal fornmat of the texture is not a color

i ndex format then the conponents are assigned anong R, G B, and A
according to Table 6.1. Specifying COLOR INDEX for format in this case
will generate the error INVALID ENUM If the internal format of the
texture is color index then the conponents are handled in one of two
ways depending on the value of format. |If format is not COLOR | NDEX,
the texture’s indices are passed through the texture's palette and the
resul ting conponents are assigned anong R, G B, and A according to
Table 6.1. If format is COLOR INDEX then the data is treated as single
conponents and the palette indices are returned. Conponents are taken
starting...

Fol | owi ng the Get Texl nage section there should be a new section:
Get Col or Tabl eEXT is used to get the current texture palette.
voi d Get Col or Tabl eEXT(enum target, enum format, enumtype, void *data);

Get Col or Tabl eEXT retrieves the texture palette of the

texture given by target. target can be any of the non-proxy targets
valid for Col orTabl eEXT. format and type are interpreted just as for
Col or Tabl eEXT. Al textures have a palette by default so

Get Col or Tabl eEXT will always be able to return data even if the interna
format of the texture is not a color index fornat.

Pal ette paraneters can be retrieved using

voi d Get Col or Tabl ePar anet eri vVEXT(enum target, enum pnane, int *parans);
voi d Get Col or Tabl ePar anet er f vEXT(enum t arget, enum pnane, float *parans);

target specifies the texture being queried and pnane
controls which paraneter value is returned. Data is returned in the
nmenory pointed to by parans.

Queryi ng COLOR _TABLE _FORMAT_EXT returns the interna

format requested by the npbst recent Col or Tabl eEXT call or the default.
COLOR TABLE W DTH EXT returns the width of the current palette.

COLOR _TABLE_RED Sl ZE_EXT, COLOR_TABLE_GREEN_ S| ZE_EXT,

COLOR _TABLE_BLUE_SI ZE_ EXT and COLOR_TABLE_ALPHA S| ZE _EXT return the
actual size of the conponents used to store the palette data internally,
not the size requested when the palette was defined.

Table 6.11, "Texture (bjects" should have a |ine appended for
TEXTURE_| NDEX_SI ZE_EXT:

TEXTURE_| NDEX_SI ZE EXT n x Z+ GetTexLevel Paraneter 0 xD texture inmage i's index resolution 3.8 -

73

EXT_paletted_texture NVIDIA OpenGL Extension Specifications

Revi sion Hi story
Oiginal draft, revision 0.5, Decenmber 20, 1995 (drewb) Created

M nor revisions and clarifications, revision 0.6, January 2, 1996 (drewb)
Repl aced all request-for-comment blocks with final text
based on inpl erent ati on.

M nor revisions and clarifications, revision 0.7, Feburary 5, 1996 (drewb)
Specified the state of the palette color information
when existing data is replaced by new data.

Clarified behavior of TexPal ette on inconsistent textures.

Maj or changes due to ARB review, revision 0.8, March 1, 1996 (drewb)
Swi tched from usi ng TexPal ett eEXT and Get TexPal ett eEXT
to using SGE’'s Col or Tabl eEXT routines. Added Col or SubTabl eEXT so
equi val ent functionality is avail able.

Al'lowed proxies in all targets.

Changed PALETTE?_EXT val ues to COLOR_| NDEX?_EXT. Added

support for one and two bit palettes. Renpbved PALETTE | NDEX EXT in
favor of COLOR_|I NDEX.

Decoupl ed palette size fromtexture data type. Palette
size is controlled only by Col or Tabl eEXT.

Changes due to ARB review, revision 1.0, My 23, 1997 (drewb)
Menti oned texture3D.

Def i ned TEXTURE_| NDEX_SI ZE_EXT.

Al l owed inpl enentations to return an index size of zero to indicate
no support for a particular format.

Al l oned usage of GL_COLOR I NDEX as a generic format in
proxy queries for determ ning an optinal index size for a particular
texture.

Di sal | oned CopyTexl mage and CopyTexSubl mage to pal etted
formats.

Del eted nention of index transfer operations during GetTexlnmage wth
pal etted formats.

74

NVIDIA OpenGL Extension Specifications EXT_point_parameters

Name
EXT_poi nt _parameters

Nanme Strings
GL_EXT_poi nt _paraneters

Ver si on
$Date: 1997/08/21 21:26:36 $ $Revision: 1.6 $

Nurnber
54

Dependenci es
SA S nmultisanple affects the definition of this extension

Overvi ew
Thi s extension supports additional geonetric characteristics of points. It
can be used to render particles or tiny light sources, comonly referred
as "Light points".
The raster brightness of a point is a function of the point area, point
color, point transparency, and the response of the display' s electron gun
and phosphor. The point area and the point transparency are derived fromthe
point size, currently provided with the <size> paraneter of gl PointSize.
The primary notivation is to allow the size of a point to be affected by
di stance attenuation. \Wen distance attenuation has an effect, the fina
poi nt size decreases as the distance of the point fromthe eye increases.
The secondary notivation is a nean to control the mapping fromthe point
size to the raster point area and point transparency. This is done in order
to increase the dynamic range of the raster brightness of points. In other
words, the al pha conponent of a point may be decreased (and its transparency
i ncreased) as its area shrinks bel ow a defined threshol d.
Thi s extension defines a derived point size to be closely related to point
brightness. The brightness of a point is given by:

dist _atten(d) = -------------------

bri ght ness(Pe) = Brightness * dist_atten(|Pe|)

where 'Pe’ is the point in eye coordinates, and 'Brightness’ is sone initia
val ue proportional to the square of the size provided with gl PointSize. Here
we sinplify the raster brightness to be a function of the rasterized point
area and point transparency.

75

EXT_point_parameters NVIDIA OpenGL Extension Specifications

bri ght ness(Pe) bri ght ness(Pe) >= Threshol d Area
area(Pe) =
Threshol d_Area Q herw se
factor(Pe) = brightness(Pe)/ Threshol d _Area
al pha(Pe) = Al pha * factor(Pe)
where ' Al pha’ cones with the point color (possibly nodified by |ighting).

"Threshol d_Area’ above is in area units. Thus, it is proportional to the
square of the threshold provided by the progranmmer through this extension

The new point size derivation nethod applies to all points, while the
threshol d applies to nultisanple points only.

| ssues
* Does point al pha nodification affect the current color ?
No.
* Do we need a special function gl Get Poi nt Par anet er f vEXT, or

get by with gl GetFloat ?

No.

* If alpha is O, then we could toss the point before it reaches the
fragnent stage.

No. This can be achieved with enabling the al pha test with reference of
0 and function of LEQUAL

* Do we need a disable for applying the threshold ?

The default threshold value is 1.0. It is applied even if the point size
i s constant.

If the default threshold is not overriden, the area of multisanple
points with provided constant size of less than 1.0, is mapped to 1.0,
whil e the al pha conponent is nodul ated accordingly, to conpensate for
the larger area. For nultisanple points this is not a problem as there
are no relevant applications yet. As mentioned above, the threshol d does
not apply to alias or antialias points.

The alternative is to have a disable of threshold application, and state
that threshold (if not disabled) applies to non antialias points only
(that is, alias and nultisanple points).

The behavi or without an enabl e/ di sabl e | ooks fi ne.

* Future extensions (to the extension)

1. GL_PO NT_FADE_ALPHA CLAVP_EXT

When the derived point size is larger than the threshold size defined by
the GL_PO NT_FADE THRESHOLD S| ZE EXT parameter, it night be desired to

76

NVIDIA OpenGL Extension Specifications EXT_point_parameters

Addi

Addi

clanmp the conputed al pha to a mninmumvalue, in order to keep the point
visible. In this case the fornmula bel ow change:

factor = (derived_size/threshol d)”~2

factor clamp <= factor
cl anped_val ue =
cl anp factor < clanp
1.0 derived_size >= threshold
al pha *=
cl anped_val ue O herw se

where clanp is defined by the GL_PO NT_FADE ALPHA CLAMP_EXT new par anet er.
Procedures and Functions

voi d gl Poi nt Par anet erf EXT (GLenum pname, G.float param);
voi d gl Poi nt Par anet erf vEXT (GLenum pnane, G.float *parans);

Tokens

Accept ed by the <pname> paraneter of gl PointParaneterfEXT, and the <pname>
of gl Get:

GL_PO NT_SI ZE_M N_EXT
GL_PO NT_SI ZE_MAX_EXT
GL_PO NT_FADE_THRESHOLD S| ZE_EXT

Accepted by the <pnane> paraneter of gl PointParaneterfvEXT, and the <pnane>
of gl Get:

GL_PO NT_SI ZE_M N_EXT 0x8126
GL_PO NT_SI ZE_MAX_EXT 0x8127
GL_PO NT_FADE_THRESHOLD SI ZE_EXT 0x8128
GL_DI STANCE_ATTENUATI ON_EXT 0x8129

tions to Chapter 2 of the 1.0 Specification (OpenG. Operation)
None
tions to Chapter 3 of the 1.0 Specification (Rasterization)

Al'l paraneters of the gl Poi nt Paranet erf EXT and gl Poi nt Par anet er f vEXT
functions set various values applied to point rendering. The derived point
size is defined to be the <size> provided with gl PointSize nodulated with a
di stance attenuation factor

The paraneters GL_PO NT_SIZE M N EXT and G._PQO NT_SI ZE MAX _EXT sinply
define an upper and | ower bounds respectively on the derived point size.

The above paraneters affect non nmultisanple points as well as multisanple
points, while the G._PO NT_FADE THRESHOLD S| ZE EXT paraneter, has no effect
on non nultisanple points. If the derived point size is larger than

the threshol d size defined by the GL_PO NT_FADE THRESHOLD SI ZE EXT
paraneter, the derived point size is used as the dianeter of the rasterized
poi nt, and the al pha conmponent is intact. Otherw se, the threshold size is

77

EXT_point_parameters NVIDIA OpenGL Extension Specifications

set to be the dianeter of the rasterized point, while the al pha conponent is
nodul at ed accordingly, to conpensate for the larger area

The di stance attenuation function coefficients, nanely a, b, and c in:
dist_atten(d) = -------------------
a+b*d+c* d2

are defined by the <pnane> paraneter G._DI STANCE ATTENUATI ON_EXT of the
function gl Poi nt ParaneterfvEXT. By default a =1, b =0, and ¢ = 0.

Let 'size’ be the point size provided with gl PointSize, let 'dist’ be the
di stance of the point fromthe eye, and let 'threshold be the threshold
size defined by the GL_PO NT_FADE THRESHOLD SI ZE par anet er of
gl Poi nt Par anet erf EXT. The derived point size is given by:
derived_size = size * sqgrt(dist_atten(dist))
Not e that when default val ues are used, the above fornula reduces to:
derived_size = size
the dianeter of the rasterized point is given by:
derived_size derived_size >= threshold
di ameter =
t hreshol d O herw se
The al pha of a point is calculated to allow the fading of points instead of
shrinking them past a defined threshold size. The al pha conponent of the
rasterized point is given by:
1 derived_size >= threshold
al pha *=
(derived_si ze/threshol d)~2 O herw se

The threshol d defined by G._PO NT_FADE_THRESHOLD S| ZE EXT is not cl anped
to the mninum and naxi num poi nt sizes.

Points do not affect the current col or.
Thi s extension doesn’t change the feedback or sel ection behavior of points.

Additions to Chapter 4 of the 1.0 Specification (Per-Fragnment Operations
and the Franebuffer)

None
Additions to Chapter 5 of the 1.0 Specification (Special Functions)
None
Additions to Chapter 6 of the 1.0 Specification (State and State Requests)

None

78

NVIDIA OpenGL Extension Specifications EXT_point_parameters

Additions to the G.X Specification
None
Dependencies on SA S nultisanple

If SG@S nultisanple is not inplenented, then the references to
mul ti sanpl e points are invalid, and should be ignored.

Errors

I N\VALID ENUM i s generated if PointParaneterfEXT paranmeter <pname> is not
GL_PO NT_SIZE M N_EXT, G._PQO NT_SI ZE MAX_EXT, or
GL_PO NT_FADE_THRESHOLD_SI ZE_EXT.

I NVALID ENUM i s generated if PointParaneterfvEXT paraneter <pname> is
not GL_PO NT_SIZE M N_EXT, GL_PQ NT_SI ZE_MAX_EXT,
GL_PO NT_FADE_THRESHOLD SI ZE_EXT, or G._DI STANCE ATTENUATI ON_EXT

I N\VALI D VALUE i s generated when val ues are out of range according to:

<pnane> val i d range
GL_PO NT_SI ZE_M N_EXT >= 0
GL_PO NT_SI ZE_MAX_EXT >= 0
GL_PO NT_FADE_THRESHOLD_SI ZE_EXT >= 0

| ssues

- shoul d we generate | NVALI D VALUE or just clanmp?

New St at e

Initial
Get Val ue Get Command Type Val ue Attribute
GL_PO NT_SI ZE_ M N_EXT CGet Fl oat v R 0 poi nt
GL_PO NT_SI ZE_ MAX_EXT CGet Fl oat v R M poi nt
GL_PO NT_FADE_THRESHOLD_SI ZE_EXT Get Fl oatv R 1 poi nt
GL_DI STANCE_ATTENUATI ON_EXT Get Fl oat v 3xR (1,0,0) poi nt

Mis the | argest avail able point size.

New | npl enent ati on Dependent State
None

Backwar ds Conpatibility
Thi s extension replaces S@ S point_paraneters. The procedures, tokens,
and nanme strings nowrefer to EXT instead of SA@S. Enunerant val ues are

unchanged. SG inpl enentati ons which previously provided this
functionality should support both forns of the extension.

79

EXT_rescale_normal NVIDIA OpenGL Extension Specifications

Name
EXT _rescal e_nor nal

Nanme Strings
GL_EXT rescal e _nor nal

Ver si on
$Date: 1997/07/02 23:38:17 $ $Revision: 1.7 $

Nunber
27

Dependenci es
None

Overvi ew
When normal rescaling is enabled a new operation is added to the
transformation of the normal vector into eye coordi nates. The normal vector
is rescaled after it is nultiplied by the inverse nodel view matri x and
before it is normalized.
The rescale factor is chosen so that in many cases nornal vectors with unit
l ength in object coordinates will not need to be normalized as they
are transforned into eye coordi nates.

New Procedures and Functions
None

New Tokens
Accepted by the <cap> paraneter of Enable, Disable, and |sEnabl ed,
and by the <pnane> paraneter of GetBool eanv, Getlntegerv, GetFloatv,
and Get Doubl ev:

RESCALE_NORMAL_EXT 0x803A

Additions to Chapter 2 of the 1.1 Specification (QpenG. Operation)
Section 2.10.3
Finally, we consider how the Mdel View transformation state affects
normals. Normals are of interest only in eye coordinates, so the rules
governing their transfornmation to other coordi nate systens are not
exam ned.
Nor mal s which have unit | ength when sent to the G, have their length
changed by the inverse of the scaling factor after transformation by

the nodel -view inverse matrix when the nodel -view matri x represents
a uniformscale. If rescaling is enabled, then normals specified with

80

NVIDIA OpenGL Extension Specifications EXT_rescale_normal

the Nornmal command are rescal ed after transformati on by the Model Vi ew
I nverse.

Normal s sent to the GL may or nay not have unit length. In addition,
the length of the normals after transformation mght be altered due
to transformation by the nodel -view inverse matrix. |f normalization
is enabled, then normals specified with the Normal 3 conmmand are
normal i zed after transformation by the nodel -view inverse matrix and
after rescaling if rescaling is enabled. Normalization and rescaling
are controlled with

voi d Enabl e(enum target);
and
voi d Di sabl e(enum target);

with target equal to NORVALI ZE or RESCALE_NORMAL. This requires two
bits of state. The initial state is for normals not to be normalized or
rescal ed.

Therefore, if the nodelview matrix is M then the transfornmed pl ane equation
is

(nx" ny nz q) =((nxnynzaq * (M-1)),

the rescaled normal is

(n.x" ny" nz") =f * (nx ny n.z),

and the fully transfornmed normal is

(n_x")
____________ (n_y") (2.1)
(n_z")

V (n_x")"2 + (n_y")"2 + (n_z")"2

If rescaling is disabled then f is 1, otherwise f is conputed
as follows:

Let mij denote the matrix elenent in rowi and colum | of M-1,

nunbering the topnost row of the matrix as row 1, and the | eftnost
colum as colum 1. Then

V (m31)"2 + (m32)~2 + (m33)"2

Alternatively, an inplenmentation ny chose to normalize the nornal
i nstead of rescaling the normal. Then

81

EXT_rescale_normal NVIDIA OpenGL Extension Specifications

V (n_x)"2 + (n_y')"2 + (n_z")"2

If normalization is disabled, then the square root in equation 2.1 is
replaced with 1, otherw se .

Additions to Chapter 3 of the 1.1 Specification (Rasterization)
None

Additions to Chapter 4 of the 1.1 Specification (Per-Fragnment Operations and
the Franebuffer)

None

Additions to Chapter 5 of the 1.1 Specification (Special Functions)
None

Additions to Chapter 6 of the 1.1 Specification (State and State Requests)
None

Additions to the G.X Specification
None

GLX Protocol
None

Errors
None

New St at e

Get Val ue Get Command Type Initial Value Attribute

RESCALE _NORMAL_EXT | sEnabl ed B FALSE transform enabl e

New | mpl ement ati on Dependent State

None

82

NVIDIA OpenGL Extension Specifications EXT_secondary_color

Name
EXT_secondary_col or
Nanme Strings
GL_EXT_secondary_col or
Ver si on

NVI DI A Date: February 22, 2000
$Dat e: 1999/06/21 19:57:47 $ $Revision: 1.8 $

Nunber
145

Dependenci es
Ei t her EXT_separate_specular_color or QpenG@ 1.2 is required, to specify
the "Col or Sunmt' stage and ot her handling of the secondary color. This is
witten against the 1.2 specification (avail able from ww. opengl. org).

Overvi ew
This extension allows specifying the RGB conponents of the secondary
col or used in the Col or Sum stage, instead of using the default
(0,0,0,0) color. It applies only in RGBA node and when LIGHTING is
di sabl ed.

| ssues

* Can we use the secondary al pha as an explicit fog weighting factor?

I SVs prefer a separate interface (see GL_EXT fog _coord). The current
interface specifies only the RGB el enents, |eaving the option of a
separate extension for SecondaryCol or4() entry points open (thus
the apparently usel ess ARRAY_SI ZE state entry).
There is an unpl easant asymetry with Color3() - one assunes A =
1.0, the other assunes A = 0.0 - but this appears unavoi dabl e given
the 1.2 color sum specification |anguage. Alternatively, the color
sum | anguage could be rewitten to not sum secondary A.

* What about nultiple "color iterators" for use with aggrandi zed
nmul titexture inplenentations?

We may need this eventually, but the secondary color is well defined
and a nore generic interface doesn't seemjustified now

* Interleaved array formats?
No. The nultiplicative explosion of formats is too great.

* Do we want to be able to query the secondary col or val ue? How does it
interact with lighting?

83

EXT_secondary_color NVIDIA OpenGL Extension Specifications

The secondary color is not part of the GL state in the
separ at e_specul ar_col or extension that went into OpenGL 1.2. There,
it can’t be queried or obtained via feedback

The secondary_col or extension is slightly nore general - purpose, so
the secondary color is explicitly in the GL state and can be queried
- but it’s still somewhat linited and can’t be obtained via

f eedback, for exanple.
New Procedures and Functions
voi d SecondaryCol or 3[bsi fd ubusui] EXT(T conponents)
voi d Secondar yCol or 3[bsi fd ubusui] VEXT(T conponent s)
voi d Secondar yCol or Poi nter EXT(i nt size, enumtype, sizei stride,
voi d *pointer)
New Tokens

Accepted by the <cap> paraneter of Enable, Disable, and |sEnabl ed,
and by the <pnane> paraneter of GetBool eanv, Getlntegerv, GetFloatv,

and Get Doubl ev:
COLOR_SUM EXT 0x8458

Accepted by the <pnane> paraneter of GetBool eanv, Getlntegerv,
Get Fl oatv, and Get Doubl ev:

CURRENT _SECONDARY_COLOR_EXT 0x8459
SECONDARY_COLOR_ARRAY_SI ZE_EXT 0x845A
SECONDARY_COLOR_ARRAY_TYPE_EXT 0x845B
SECONDARY_COLOR_ARRAY_STRI DE_EXT 0x845C

Accepted by the <pnanme> paraneter of GetPointerv:
SECONDARY_COLOR_ARRAY_PO NTER_EXT 0x845D

Accepted by the <array> paraneter of EnableCientState and
Di sabl ed i ent St at e:

SECONDARY_COLOR_ARRAY_EXT 0x845E
Additions to Chapter 2 of the 1.2 Draft Specification (OpenG Operation)

These changes describe a new current state type, the secondary col or, and
the conmands to specify it:

- (2.6, p. 12) Second paragraph changed to:
"Each vertex is specified with two, three, or four coordinates. In
addition, a current normal, current texture coordinates, current

color, and current secondary color may be used in processing each
vertex."

Third paragraph, second sentence changed to:

"These associ ated colors are either based on the current col or and
current secondary color, or produced by lighting, depending on

84

NVIDIA OpenGL Extension Specifications EXT_secondary_color

whet her or not lighting is enabled."
- 2.6.3, p. 19) First paragraph changed to

"The only GL conmands that are allowed within any Begin/ End pairs
are the commands for specifying vertex coordinates, vertex col ors,
normal coordi nates, and texture coordi nates (Vertex, Color
Secondar yCol or EXT, Index, Normal, TexCoord)..."

- (2.7, p. 20) Starting with the fourth paragraph, change to:

"Finally, there are several ways to set the current color and
secondary color. The GL stores a current single-valued col or index
as well as a current four-valued RGBA col or and secondary col or

Ei ther the index or the color and secondary col or are significant
depending as the GL is in color index node or RGBA node. The node
selection is made when the GL is initialized.

The conmands to set RGBA colors and secondary colors are:

voi d Col or[34][bsifd ubusui] (T conponents)
void Col or[34][bsifd ubusui]v(T conmponents)
voi d Secondar yCol or 3[bsi fd ubusui] EXT(T conponents)
voi d Secondar yCol or 3[bsi fd ubusui] VEXT(T conponents)

The col or command has two maj or variants: Color3 and Col or4. The
four value versions set all four values. The three val ue versions
set R G and B to the provided values; Ais set to 1.0. (The
conversion of integer color conponents (R, G B, and A) to
floating-point values is discussed in section 2.13.)

The secondary col or conmand has only the three val ue versions.
Secondary A is always set to 0.0.

Versi ons of the Col or and SecondaryCol or EXT conmmands that take
fl oating-point val ues accept values nomnally between 0.0 and
1.0...."

The | ast paragraph is changed to read:

"The state required to support vertex specification consists of four
fl oati ng-poi nt nunbers to store the current texture coordi nates s,
t, r, and g, four floating-point values to store the current RGBA
color, four floating-point values to store the current RGBA
secondary color, and one floating-point value to store the current
color index. There is no notion of a current vertex, so no state is
devoted to vertex coordinates. The initial values of s, t, and r of
the current texture coordinates are zero; the initial value of qis
one. The initial current nornal has coordinates (0,0,1). The initial
RGBA color is (R GB,A =(1,1,1,1). The initial RGBA secondary
color is (RGB,A =(0,0,0,0). The initial color index is 1."

- (2.8, p. 21) Added secondary color comuand for vertex arrays:
Change first paragraph to read:

"The vertex specification comrands described in section 2.7 accept

85

EXT_secondary_color NVIDIA OpenGL Extension Specifications

data in alnost any format, but their use requires nmany conmnmand
executions to specify even sinple geonetry. Vertex data may al so be
placed into arrays that are stored in the client’s address space.

Bl ocks of data in these arrays may then be used to specify nultiple
geonetric primtives through the execution of a single G.L conmand.
The client may specify up to seven arrays: one each to store edge
flags, texture coordinates, colors, secondary colors, color indices,
normal s, and vertices. The comrands”

Add to functions listed follow ng first paragraph

voi d Secondar yCol or Poi nt er EXT(i nt size, enumtype, sizei stride,
voi d *pointer)

Add to table 2.4 (p. 22):

Conmand Si zes Types

Secondar yCol or Poi nt er EXT 3 byt e, ubyt e, short, ushort,
int,uint,float, double

Starting with the second paragraph on p. 23, change to add
SECONDARY_COLOR_ARRAY_EXT:

"An individual array is enabled or disabled by calling one of

voi d Enabl ed i ent St at e(enum arr ay)
voi d Di sabl eCient State(enum array)

with array set to EDGE_FLAG ARRAY, TEXTURE_COORD_ARRAY, COLOR_ARRAY,
SECONDARY_COLOR_ARRAY_EXT, | NDEX_ARRAY, NORMAL_ARRAY, or
VERTEX_ARRAY, for the edge flag, texture coordinate, color,
secondary color, color index, normal, or vertex array, respectively.

The ith elenent of every enabled array is transferred to the GL by
calling

void ArrayEl enent(int i)

For each enabled array, it is as though the correspondi ng comand
fromsection 2.7 or section 2.6.2 were called with a pointer to
element i. For the vertex array, the corresponding conmand is

Vert ex<si ze><type>v, where <size> is one of [2,3,4], and <type> is
one of [s,i,f,d], corresponding to array types short, int, float,
and doubl e respectively. The correspondi ng conmands for the edge
flag, texture coordinate, color, secondary color, color index, and
normal arrays are EdgeFl agv, TexCoord<si ze><type>v,

Col or <si ze><t ype>v, SecondaryCol or 3<t ype>vEXT, |ndex<type>v, and
Nor nal <t ype>v, respectively..."

Change pseudocode on p. 27 to disable secondary color array for
canned interleaved array formats. After the Iines

Di sabl ed i ent St at e(EDGE_FLAG_ARRAY) ;
Di sabl eCl i ent St at e(| NDEX_ARRAY) ;

insert the line

86

NVIDIA OpenGL Extension Specifications EXT_secondary_color

Di sabl ed i ent St at e(SECONDARY_COLOR_ARRAY_EXT) ;

Substitute "seven" for every occurence of "six

on p. 27.

in the final paragraph

- (2.12, p. 41) Add secondary color to the current rasterpos state.
Change the | ast paragraph to read

"The current raster position requires five single-precision

fl oati ng-point values for its x_w, y_w and z_w w ndow coordi nat es,
its wec clip coordinate, and its eye coordinate distance, a single
valid bit, a color (RGBA color, RGBA secondary col or, and col or

i ndex), and texture coordinates for associated data. In the initial
state, the coordinates and texture coordi nates are both $(0,0,0,1)%,
the eye coordinate distance is 0, the valid bit is set, the

associ ated RGBA color is $(1,1,1,1)%, the associ ated RCBA secondary
color is $(0,0,0,0)%, and the associated color index color is 1. In
RGBA node, the associated color index always has its initial value;
in color index node, the RGBA col or and and secondary col or al ways
maintain their initial values."

- (2.13, p. 43) Change second paragraph to acknow edge two col ors when
lighting is disabled:

"Next, lighting, if enabled, produces either a color index or
primary and secondary colors. If lighting is disabled, the current
color index or current color (primary color) and current secondary
color are used in further processing. After lighting, RGBA colors
are clanped..."

- (Figure 2.8, p. 42) Change to show primary and secondary RGBA colors in
both I'it and unlit paths.

- (2.13.1, p. 44) Change so that the second paragraph starts:
"Lighting may be in one of two states:
1. Lighting Of. In this state, the current color and current secondary
color are assigned to the vertex primary color and vertex secondary
col or, respectively.
2. ..."

- (2.13.1, p. 48) Change the sentence follow ng equation 2.5 (for spot_i)
so that color sumis inplicitly enabl ed when SEPARATE SPECULAR COLCOR i s
set:

"Al'l conputations are carried out in eye coordi nates. Wen c_es =

SEPARATE _SPECULAR COLOR, it is as if color sum (see section 3.9) were
enabl ed, regardl ess of the value of COLOR_SUM EXT."

- (3.9, p. 136) Change the first paragraph to read

87

EXT_secondary_color

"After texturing,
(whi ch texturing,

C_sec.

If color sumis enabl ed

secondary color is always 0).
the range [0, 1].

post texturing color.

Enabl e and Di sabl e commands,

COLOR_SUM EXT.

The state required is a single bit
In the initial

enabl ed or di sabl ed.

a fragment has two RGBA colors
i f enabl ed, may have nodified) and a secondary col or

NVIDIA OpenGL Extension Specifications

a primary color c_pri

the conponents of these two colors are sunmmed
to produce a single post-texturing RGBA color ¢ (the A conponent of the

The conponents of c are then clanped to
If color sumis disabled

then c_pri is assigned to the

Col or sumis enabl ed or disabled using the generic
respectively,

wi th the synbolic constant

i ndi cati ng whether color sumis

st at e,

color sumis disabled."

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

None

Additions to the G.X Specification

None

GLX Prot ocol

Ei ght new G rendering conmmands are added. The foll owi ng conmands

are sent to the server as part of a gl XRender

Secondar yCol

RPRRPEPNN

Secondar yCol

NNNNDNDN

Secondar yCol

ArBhBADNODN

Secondar yCo

A BBADNODN

or 3bvEXT
8

4126

| NT8

| NT8

| NT8

or 3svEXT
12

4127

I NT16

I NT16

| NT16

or 3i VEXT
16

4128

| NT32

| NT32

| NT32

or 3f vEXT
16

4129
FLOAT32
FLOAT32
FLOAT32

rendering
rendering
v[0]

v[1]

v[2]
unused

rendering
rendering
v[0]

v[1]

v[2]
unused

rendering
rendering
v[0]
v[1]
v[2]

rendering
renderi ng
v[0]
v[1]
v[2]

conmand
conmand

comand
conmand

conmand
comand

comand
conmand

88

request:

| ength
opcode

[engt h
opcode

| ength
opcode

[engt h
opcode

NVIDIA OpenGL Extension Specifications EXT_secondary_color

Secondar yCol or 3dvEXT

2 28 rendering conmand | ength

2 4130 renderi ng comand opcode

8 FLOAT64 v[0]

8 FLOAT64 v[1]

8 FLOAT64 v[2]
Secondar yCol or 3ubvEXT

2 8 renderi ng command | ength

2 4131 renderi ng comand opcode

1 CARD8 v[0]

1 CARD8 v[1]

1 CARD8 v[2]

1 unused
Secondar yCol or 3usvEXT

2 12 rendering conmand | ength

2 4132 renderi ng comand opcode

2 CARD16 v[0]

2 CARD16 v[1]

2 CARD16 v[2]

2 unused
Secondar yCol or 3ui VEXT

2 16 renderi ng command | ength

2 4133 renderi ng comand opcode

4 CARD32 v[0]

4 CARD32 v[1]

4 CARD32 v[2]

Errors

I N\VALI D VALUE is generated if SecondaryCol or Poi nt er EXT paraneter <size>
is not 3.

I N\VALID ENUM i s generated if SecondaryCol or Poi nt er EXT paraneter <type>
is not BYTE, UNSI GNED BYTE, SHORT, UNSI GNED SHORT, | NT, UNSI GNED I NT,
FLOAT, or DOUBLE

I N\VALI D VALUE is generated if SecondaryCol or Poi nt er EXT par amneter
<stride> is negative

89

EXT_secondary_color

New St at e

(table 6.5, p.
Get Val ue

195)

CURRENT _SECCNDARY_COLOR EXT C

(table 6.6, p. 197)

SECONRY_GALCR ARRAY EXT
SECORY GOA.(R ARRAY S ZE BXT
SECONRY GOL(R ARRAY TYPE BXT
SECONRY_GOLCR ARRAY STR O BXT
SECONRY_GOLCR ARRAY PO NTER EXT

(table 6.8, p. 198)
Get Val ue Type
COLOR_SUM EXT B

Type Get Conmmand
Cet | nt egeryv,
Get Fl oat v
Initial
Type Gt Gonmand Val ue
B | sEnabl ed Fal se
7+ Getintegerv 3
Z8 Getintegerv HLOAT
Z+ Getintegerv O

Y GetRointerv 0

Initial

NVIDIA OpenGL Extension Specifications

Initial Value Description Sec Attribute

(0,0,0,0) Current 2.7 current
secondary col or

Descri ption Sec Atribute

Sec. color array enabl e

Sec. colors per vertex

Type of sec. col or conponents
Sride between sec. colors
Pointer to the sec. color array

2.8 vertex-array
2.8 vertex-array
2.8 vertex-array
2.8 vertex-array
2.8 vertex-array

Sec Attribute

3.9 fog/enable
sum enabl ed

Val ue Description

True if color

90

NVIDIA OpenGL Extension Specifications EXT_separate_specular_color

Nanme

EXT_separ at e_specul ar_col or
Nanme Strings

GL_EXT _separ at e_specul ar _col or
Ver si on

$Dat e: 1997/10/05 00:16:23 $ $Revision: 1.3 $
Nurnber

144
Dependenci es

None
Overvi ew

Thi s extension adds a second color to rasterization when lighting is
enabled. Its purpose is to produce textured objects with specul ar

hi ghl i ghts which are the color of the lights. It applies only to
rgba |ighting.

The two colors are conputed at the vertexes. They are both cl anped,
fl at-shaded, clipped, and converted to fixed-point just like the
current rgba color (see Figure 2.8). Rasterization interpolates
both colors to fragnments. |If texture is enabled, the first (or
primary) color is the input to the texture environment; the fragnent
color is the sumof the second color and the color resulting from
texture application. |If texture is not enabled, the fragnent col or
is the sumof the two col ors.

A new control to LightMdel*, LIGHT_MODEL CO.OR CONTROL_EXT, nmnages
the values of the two colors. It takes values: SINGLE COLOR EXT, a
conpatibility node, and SEPARATE SPECULAR COLOR EXT, the object of
this extension. 1In single color node, the primary color is the
current final color and the secondary color is 0.0. |In separate
specul ar node, the primary color is the sumof the anbient, diffuse,
and enissive ternms of final color and the secondary color is the
specul ar term

There is nmuch concern that this extension nmay not be conpatible with
the future direction of OpenCGL with regards to better lighting and
shadi ng nodels. Until those inpacts are resol ved, serious
consi deration should be given before adding to the interface
specified herein (for exanple, allowing the user to specify a
second i nput color).

| ssues
* Where is emissive included?

RESOLVED - Enmissive is included with the anmbi ent and diffuse

91

EXT_separate_specular_color NVIDIA OpenGL Extension Specifications

ternms. G ouping em ssive with specular (the "proper"” thing) could
be inplemented with a new value for the color control

* Should there be two colors when not lighting or with index
lighting?

RESOLVED - The answer is probably yes--there should be two colors
when lighting is disabled and there could be an incorporation of
two colors with index lighting; but these are beyond the scope of
this extension. Further, attenpts to acconplish these may not be
conpatible with the future direction of Qpen@ with respect to
hi gh quality lighting and shadi ng nodels.
* What happens when texture is disabl ed?
RESOLVED - The extension specifies to add the two col ors when
texture is disabled. This is conpatible with the phil osophy of
"if texture is disabled, this node does not apply".
New Procedures and Functions
None.
New Tokens
Accepted by the <pnane> paraneter of LightMdel*, and al so by the
<pname> paraneter of GetBool eanv, Cetlntegerv, CetFloatv, and
Get Doubl ev:
LI GHT_MODEL_COLOR_CONTROL_EXT 0x81F8

Accepted by the <parane paraneter of Light©Mdel* when <pname> is
LI GHT_MODEL_COLOR_CONTROL_EXT

SI NGLE_COLOR_EXT 0x81F9
SEPARATE_SPECULAR_CCLOR_EXT Ox81FA

Additions to Chapter 2 of the 1.0 Specification (OQpenG Operation)

- (2.13, p. 40) Rework the second paragraph to acknow edge two

col ors:
"Next, lighting, if enabled, produces either a color index or
primary and secondary colors. |If lighting is disabled, the

current color index or color is used in further processing (the
current color is the prinmary color and the secondary color is 0).
After lighting, colors are clanped..."

- (Figure 2.8, p. 41) Change RGBA to primary RGBA and secondary RGB

Ideally, there m ght be an RGB2 underneath RGBA (both pl aces).
Alternatively, a note in the caption could clarify that RGBA
referred to the primary RGBA and a secondary RGB. (Speaking of
the caption, the part about "mis the nunber of bits an R G B,
or A conponent” could be renoved as m doesn’t appear in the

di agram)

92

NVIDIA OpenGL Extension Specifications EXT_separate_specular_color

- (2.13.1, p. 42) Rework the opening of this section to not inply a
singl e color:

In the first sentence, change "a color"” to "colors". Rephrase the
item zation of the two lighting states to:

"1. Lighting Of. In this state, the current color is assigned to
the vertex primary color. The vertex secondary color is O.

2. Lighting On. In this state, the vertex primry and secondary
colors are conputed fromthe current lighting paraneters."

- (Table 2.7, p.44) Add new entry (at the bottony:

Paranmeter Type Default Val ue Descri ption

c_es enum SINGLE COLOR EXT controls conputation of colors
- (p. 45, top of page) Rephrase the first |line and equation:

"Lighting produces two colors at a vertex: a primary color ¢c_1 and
a secondary color c_2. The values of c¢c_1 and c_2 depend on the

[ight nmodel color control, c_es (note: c_es should be initalics
and ¢ 1 and ¢ 2 in bold, so this really won't be as confusing as
it seens). |If c_es = SINGLE COLOR EXT, then the equations to
conpute ¢c_1 and c_2 are (note: the equation for ¢c_1 is the current
equation for c):

c_1=e.cm
+ acm* a_cs
+ SUMatt i * spot i * (a_cm* a_cli
+ dot(n, VP _pli) * d_cm?™* d_cli
+ f i * dot(n, h_i)*s_rm* s_ cm* s _cli)
c2=0
I f c_es = SEPARATE_SPECULAR COLOR_EXT, then:
c 1 e cm

acm?* a_cs
SUM (att i * spot_i * (a_cm?* a_cli
+ (n dot VP pli) * dcm* d_ cli)

+ + 1l

c_2 =SUMatt_i * spot_i * (f_i * (ndot h_i)?s_ rm* s cm™* s _cli)

- (p. 45, second paragraph frombotton) Carify that Ais in the
primary col or:

After the sentence "The val ue of A produced by lighting is the
al pha val ue associated with d_cnf, add "A is al ways associ at ed
with the primary color ¢_1; c¢_2 has no al pha conponent."”

- (Table 2.8, p. 48) Add a new entry (at the bottom:
Paraneter Nanme Nurmber of val ues

c_es LI GHT_MODEL_COLOR_CONTROL_EXT 1

93

EXT_separate_specular_color NVIDIA OpenGL Extension Specifications

- (2.13.6, p. 51) Carify that both prinmary and secondary colors are
cl anped:

Repl ace "RGBA" in the first line of the section with "both primary
and secondary".

- (2.13.7, p. 52) darify what happens to primary and secondary
col ors when flat shading--reword the first paragraph:

"Aprimtive may be flatshaded, neaning that all vertices of the
primtive are assigned the sane col or index or primary and
secondary colors. These cone fromthe vertex that spawned the
primitive. For a point, these are the colors associated with the
point. For a line segnent, they are the colors of the second
(final) vertex of the segnent. For a polygon, they cone froma
sel ected vertex depending on how t he pol ygon was generated. Table
2.9 sumuarizes the possibilities."

- (2.13.8, p. 52) Rework to not inply a single color
In the second sentence, change "If the color is" to "Those" and "
it is" to "are". In the first sentence of the next paragraph
change "the color" to "two col ors”

Additions to Chapter 3 of the 1.0 Specification (Rasterization)

- (Figure 3.1, p. 55) Add a box between texturing and fog called
“col or sunt.

- (3.8, p. 85 In the first paragraph, second sentence, insert
"primary" before RGBA. Insert after this sentence "Texturing does
not affect the secondary color."

- (new section before 3.9) Insert new section titled "Col or Suni:

"At the beginning of this stage in RGBA npode, a fragnent has two
colors: a primary RGBA col or (which texture, if enabled, may have
nodi fi ed) and a secondary RGB color. This stage sums the R G
and B conponents of these two colors to produce a single RGBA
color. If the resulting RG val ues exceed 1.0, they are cl anped
to 1.0.

In color index node, a fragnent only has a single color index and
this stage does nothing."

Additions to Chapter 4 of the 1.0 Specification (Per-Fragnment Operations
and the Frane Buffer)

None.
Additions to Chapter 5 of the 1.0 Specification (Special Functions)
- (5.3, p. 137) Specify that feedback returns the primary col or by

changing the | ast sentence of the large paragraph in the mddle
of the page to:

94

NVIDIA OpenGL Extension Specifications EXT_separate_specular_color

"The colors returned are the primary colors. These colors and the
texture coordi nates are those resulting fromthe clipping operations
as described in section 2.13.8."
Additions to Chapter 6 of the 1.0 Specification (State and State Requests)
- (Table 6.9, p. 157) Add:
Get Value - LI GHT_MODEL_COLOR_CONTROL_EXT
Type - Z2
Get Cmd - Getlntegerv
Initial Value - SINGLE COLOR EXT
Description - color control
Sec. - (whatever it ends up as)
Attribute - lighting
Additions to the G.X Specification
None.
GLX Protocol
None.
Errors
None.
New St at e

(see changes to table 6.9)

95

EXT_shared_texture palette NVIDIA OpenGL Extension Specifications

Name
EXT_shared_texture_palette
Nanme Strings
GL_EXT _shared_texture_palette
Ver si on
$Date: 1997/09/10 23:23:04 $ $Revision: 1.2 $
Nurber
141
Dependenci es
EXT paletted texture is required.
Overvi ew
EXT_shared_texture_palette defines a shared texture palette which may be
used in place of the texture object palettes provided by
EXT paletted texture. This is useful for rapidly changing a palette
conmon to nmany textures, rather than having to reload the new palette
for each texture. The extension acts as a switch, causing all | ookups
that would normally be done on the texture's palette to instead use the
shared pal ette.
| ssues
* Do we want to use a new <target> to Col orTable to specify the
shared palette, or can we just infer the new target fromthe
correspondi ng Enabl e?
* A future extension of larger scope might define a "texture palette
object” and bind these objects to texture objects dynamcally, rather
than making palettes part of the texture object state as the current

EXT pal etted texture spec does.

* Should there be separate shared palettes for 1D, 2D, and 3D
textures?

Probably not; palette | ookups have nothing to do with the
dimensionality of the texture. If nmultiple shared palettes
are needed, we should define palette objects.

* There’s no proxy nmechani smfor checking if a shared palette can
be defined with the requested parameters. WIIl it suffice to
assune that if a texture palette can be defined, so can a shared
palette with the sane paraneters?

* The changes to the spec are based on changes al ready made for

EXT paletted texture, which nmeans that all three docunments nust
be referred to. This is quite difficult to read.

96

NVIDIA OpenGL Extension Specifications EXT_shared_texture palette

* The changes to section 3.8.6, defining how shared palettes are
enabl ed and di sabl ed, mi ght be better placed in section 3.8.1.
However, the underlying EXT_pal etted_texture does not appear to
nodi fy these sections to define exactly how pal ette | ookups are
done, and it’'s not clear where to put the changes.

New Procedures and Functi ons
None

New Tokens

Accepted by the <pnanme> paraneters of GetBool eanv, Getlntegerv,

Cet Fl oat v, Get Doubl ev, |sEnabl ed, Enabl e, D sable, ColorTabl eEXT,

Col or SubTabl eEXT, Get Col or Tabl eEXT, Get Col or Tabl ePar anet eri VEXT, and
Cet Col or Tabl ePar anet er f d EXT:

SHARED TEXTURE_PALETTE_EXT Ox81FB

Additions to Chapter 2 of the 1.1 Specification (QpenG. Operation)
None

Additions to Chapter 3 of the 1.1 Specification (Rasterization)

Section 3.8, 'Texturing,' subsection 'Texture Inmage Specification' is
nodi fied as foll ows:

In the Palette Specification Commands section, the sentence
begi nning 'target specifies which texture is to’ should be changed
to:

target specifies the texture palette or shared palette to be
changed, and may be one of TEXTURE 1D, TEXTURE 2D,
PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, TEXTURE_3D_EXT,
PROXY_TEXTURE_3D_EXT, or SHARED TEXTURE_PALETTE_EXT.

In the 'Texture State and Proxy State’ section, the sentence
beginning 'A texture's palette is initially...’” should be changed
to:

There is also a shared palette not associated with any texture, which
may override a texture palette. All palettes are initially...

Section 3.8.6, 'Texture Application’ is nodified by appending the
fol | owi ng:

Use of the shared texture palette is enabled or disabled using the
generic Enabl e or Disable commands, respectively, with the synbolic
const ant SHARED TEXTURE_PALETTE_EXT.

The required state is one bit indicating whether the shared palette is
enabl ed or disabled. In the initial state, the shared palettes is
di sabl ed.

Additions to Chapter 4 of the 1.1 Specification (Per-Fragnment Operations
and the Frane buffer)

97

EXT_shared_texture palette NVIDIA OpenGL Extension Specifications

Additions to Chapter 5 of the 1.1 Specification (Special Functions)
Additions to Chapter 6 of the 1.1 Specification (State and State Requests)

In the section on GetTexl mage, the sentence beginning 'If format is
not COLOR I NDEX...' should be changed to:

If format is not COLOR INDEX, the texture' s indices are passed
through the texture's palette, or the shared palette if one is
enabl ed, and the resulting conponents are assigned anong R, G B,
and A according to Table 6.1.

In the Get Col or Tabl e section, the first sentence of the second
par agr aph shoul d be changed to read:

Get Col or Tabl eEXT retrieves the texture palette or shared palette
gi ven by target.

The first sentence of the third paragraph should be changed to read:
Pal ette paraneters can be retrieved using

voi d Get Col or Tabl ePar anet eri vVEXT(enum target, enum pnane, int *parans);
voi d Get Col or Tabl ePar anet er f vEXT(enum t arget, enum pnane, float *parans);

target specifies the texture palette or shared palette being
queried and pname controls which paranmeter value is returned.

Additions to the G.X Specification

None
New St at e
Get Val ue Get Command Type Initial Value Attribute
SHARED TEXTURE_PALETTE EXT IsEnabled B False text ur e/ enabl e

New | npl enent ati on Dependent State

None

98

NVIDIA OpenGL Extension Specifications EXT_stencil_wrap

Name
EXT_stencil _wap

Nanme Strings
GL_EXT stencil _wrap

Ver si on
Date: 11/15/1999 Version 1.2

Nurnber
176

Dependenci es
None

Overvi ew
Various algorithms use the stencil buffer to "count" the nunber of
surfaces that a ray passes through. As the ray passes into an object,
the stencil buffer is increnented. As the ray passes out of an object,
the stencil buffer is decrenented.
GL requires that the stencil increment operation clanps to its nmaxi num
value. For algorithns that depend on the difference between the sum
of the increnents and the sum of the decrenments, clanping causes an

erroneous result.

Thi s extension provides an enable for both nmaxi num and m ni num w appi ng
of stencil values. Instead, the stencil value waps in both directions.

Two additional stencil operations are specified. These new operations
are simliar to the existing | NCR and DECR operations, but they wap their
result instead of saturating it. This functionality matches the new
stenci| operations introduced by DirectX 6.

New Procedures and Functions
None

New Tokens

Accepted by the <mpode> paraneter of Bl endEquati on:

| NCR_\RAP_EXT 0x8507
DECR_WRAP_EXT 0x8508

Additions to Chapter 2 of the G. Specification (OpenG. Operation)

None

99

EXT_stencil_wrap NVIDIA OpenGL Extension Specifications

Additions to Chapter 3 of the G. Specification (Rasterization)
None

Additions to Chapter 4 of the G. Specification (Per-Fragnent Operations
and the Franebuffer)

Section 4.1.4 "Stencil Test" (page 144), change the 3rd paragraph to read:

"... The synbolic constants are KEEP, ZERO REPLACE, |NCR, DECR,

| NVERT, | NCR WRAP_EXT, and DECR WRAP_EXT. The correspond to
keeping the current value, setting it to zero, replacing it with
the reference value, increnenting it with saturation, decrementing
it with saturation, bitwise inverting it, increnenting it w thout
saturation, and decrenenting it wi thout saturation. For purposes of
i ncrenmenting and decrenenting, the stencil bits are considered as an
unsigned integer. Incrementing or decrenmenting with saturation wll
clanp values at 0 and the maxi mum representabl e value. Incrementing
or decrenmenting wthout saturation will wap such that increnenting
the maxi mum representabl e value results in 0 and decrenenting O
results in the maxi num representabl e val ue. "

Additions to Chapter 5 of the G. Specification (Special Functions)
None
Additions to Chapter 6 of the GL Specification (State and State Requests)
None
Additions to the G.X Specification
None
GLX Protocol
None
Errors
I NVALID ENUM i s generated by Stencil QO if any of its paraneters

are not KEEP, ZERO, REPLACE, |INCR, DECR, |NVERT, |NCR WRAP_EXT,
or DECR WRAP_EXT.

New St at e

(tabl e 6.15, page 205)
Get Val ue Type Get Conmmand Initial Value Sec Attribute
STENCI L_FAI L Z8 Get I ntegerv KEEP 4.1.4 stencil-buffer
STENCI L_PASS DEPTH FAI L Z8 Get I ntegerv KEEP 4.1.4 stencil-buffer
STENCI L_PASS _DEPTH_PASS Z8 Get | nt egerv KEEP 4.1.4 stencil-buffer

NOTE: the only change is that Z6 type changes to Z8
New | mpl ement ati on Dependent State

None

100

NVIDIA OpenGL Extension Specifications EXT_texture_compression_s3tc

Nane

EXT texture_conpression_s3tc
Name Strings

GL_EXT_t exture_conpressi on_s3tc

Cont act

Pat Brown, Intel Corporation (patrick.r.brown "at’ intel.con

St at us
FI NAL

Ver si on
1.0, 7 July 2000

Number
198

Dependenci es
QpenGL 1.1 is required.
GL_ARB texture_conpression is required.
This extension is witten against the Open@ 1.2.1 Specification.

Overvi ew
Thi s extension provides additional texture conpression functionality
specific to S3's S3TC format (called DXTC in Mcrosoft’s DirectX APl),
subject to all the requirenents and linitations described by the extension
GL_ARB_t ext ure_conpressi on.
Thi s extension supports DXT1l, DXT3, and DXT5 texture conpression fornats.
For the DXT1 inmage format, this specification supports an RGB-only node
and a special RGBA nobde with single-bit "transparent” al pha.

| P Status

Contact S3 Incorporated (http://ww.s3.con) regarding any intellectual
property issues associated with inplenenting this extension.

WARNI NG Vendors able to support S3TC texture conpression in Direct3D
drivers do not necessarily have the right to use the sane functionality in
OpenGL.

| ssues
(1) Shoul d DXT2 and DXT4 (prenultiplied al pha) formats be supported?
RESOLVED: No -- insufficient interest. Supporting DXT2 and DXT4
woul d require sone rework to the TexEnv definition (maybe add a new
base internal format RGBA_PREMULTI PLI ED_ALPHA) for these formats.

Note that the EXT_texture_env_conbi ne extension (which extends nornal
TexEnv nodes) can be used to support textures with premultipled al pha.

101

EXT_texture_compression_s3tc NVIDIA OpenGL Extension Specifications

(2) Shoul d generic "RGB_S3TC EXT" and "RGBA_S3TC EXT" enuns be supported
or should we use only the DXT<n> enuns?

RESOLVED: No. A generic RGBA S3TC EXT is problematic because DXT3
and DXT5 are both nominally RGBA (and DXT1 with the 1-bit alpha is
al so) yet one format nust be chosen up front.

(3) Shoul d TexSubl mage support all bl ock-aligned edits or just the m ninal
functionality required by the the ARB_texture_conpression extension?

RESOLVED: Allow all valid block-aligned edits.

(4) A pre-conpressed image with a DXT1 fornat can be used as either an
RGB_S3TC DXT1 or an RGBA S3TC DXT1 inmage. |[|f the inage has
transparent texels, how are they treated in each fornat?

RESOLVED: The renderer has to make sure that an RGB_S3TC DXT1 format
is decoded as RGB (where alpha is effectively one for all texels),
whi |l e RGBA_S3TC_DXT1 is decoded as RGBA (where al pha is zero for all
texels with "transparent” encodings). Qherwise, the formats are

i dentical .

(5) I's the encoding of the RGB conponents for DXT1 formats correct in this
spec? MSDN docunent ation does not specify an RGB col or for the
"transparent" encoding. Is it really black?

RESOLVED: Yes. The specification for the DXT1 format initially
required bl ack, but |ater changed that requirenment to a
recommendation. All vendors involved in the definition of this
speci fication support black. In addition, specifying black has a
useful behavi or.

When bl ending multiple texels (GL_LINEAR filtering), m xing opaque and
transparent sanples is problematic. Defining a black color on
transparent texels achieves a sensible result that works like a
texture with prenultiplied al pha. For exanple, if three opaque white
and one transparent sanple is being averaged, the result would be a
75% intensity gray (with an alpha of 75%. This is the sane result on
the col or channels as woul d be obtained using a white color, 75%

al pha, and a SRC_ALPHA bl end factor.

(6) Is the encoding of the RGB conponents for DXT3 and DXT5 fornmats
correct in this spec? MDN docunentation suggests that the RGB bl ocks
for DXT3 and DXT5 are decoded as described the the DXT1 fornmat.

RESOLVED: Yes -- this appears to be a bug in the MSDN docunentati on.
The specification for the DXT2-DXT5 formats require decodi ng using the
opaque bl ock encodi ng, regardl ess of the relative val ues of "col or0"
and "col or1".
New Procedures and Functions
None.
New Tokens
Accepted by the <internal format> paranmeter of Texlmage2D, CopyTexl mage2D,

and ConmpressedTex| mage2DARB and the <format> paraneter of
Conpr essedTexSubl nage2DARB:

COVPRESSED RGB_S3TC_DXT1_EXT 0x83F0
COVPRESSED_RGBA_S3TC DXT1_EXT 0x83F1
COVPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2

102

NVIDIA OpenGL Extension Specifications EXT_texture_compression_s3tc

COVPRESSED_RGBA_S3TC DXT5_EXT 0x83F3
Additions to Chapter 2 of the OpenG. 1.2.1 Specification (OpenG Operation)
None.
Additions to Chapter 3 of the OpenG. 1.2.1 Specification (Rasterization)

Add to Table 3.16.1: Specific Conpressed Internal Formats

Conpressed | nternal Format Base | nternal Fornat
COVPRESSED RGB_S3TC_DXT1_EXT RGB

COVPRESSED RGBA S3TC DXT1_EXT RGBA
COMPRESSED_RGBA_S3TC_DXT3_EXT RGBA

COVPRESSED RGBA _S3TC DXT5_EXT RGBA

Modi fy Section 3.8.2, Alternate | mage Specification

(add to end of TexSubl mage discussion, p.123 -- after edit fromthe
ARB_t ext ure_conpressi on spec)

If the internal format of the texture inage being nodified is

COMPRESSED _RGB_S3TC _DXT1_EXT, COVPRESSED RGBA_S3TC_DXT1_EXT,
COVPRESSED RGBA _S3TC DXT3_EXT, or COVPRESSED RGBA S3TC DXT5_EXT, the
texture is stored using one of the several S3TC conpressed texture inmage
formats. Such inmages are easily edited al ong 4x4 texel boundaries, so the
limtations on TexSubl mage2D or CopyTexSubl mage2D paraneters are rel axed.
TexSubl mage2D and CopyTexSubl mage2D will result in an | NVALI D_OPERATI ON
error only if one of the follow ng conditions occurs:

* <width>is not a nultiple of four or equal to TEXTURE_W DTH,
unl ess <xoffset> and <yoffset> are both zero.

* <height>is not a multiple of four or equal to TEXTURE_HEI GHT,
unl ess <xoffset> and <yoffset> are both zero.

* <xoffset> or <yoffset>is not a nultiple of four.

The contents of any 4x4 block of texels of an S3TC conpressed texture
i mge that does not intersect the area being nodifed are preserved during
val i d TexSubl nage2D and CopyTexSubl nmage2D cal | s.

Add to Section 3.8.2, Alternate |Image Specification (adding to the end of
the ConpressedTex| mage section introduced by the ARB_texture_conpression
spec)

If <internalformat> is COVWPRESSED RCGB_S3TC DXT1_EXT,
COVWPRESSED RGBA S3TC DXT1_EXT, COWPRESSED RGBA S3TC DXT3_EXT, or
COVPRESSED_RGBA _S3TC_DXT5_EXT, the conpressed texture is stored using one
of several S3TC conpressed texture image formats. The S3TC texture
conpressi on al gorithm supports only 2D i nages without borders.

Conpr essedTex| magelDARB and Conpr essedTex|l nage3DARB pr oduce an

I NVALI D_ENUM error if <internalformat> is an S3TC format.

Conpr essedTex| mage2DARB wi | | produce an | NVALI D_OPERATI ON error if
<border> is non-zero.

Add to Section 3.8.2, Alternate Inage Specification (adding to the end of
t he ConpressedTexSubl mage section introduced by the
ARB_t ext ure_conpressi on spec)

If the internal format of the texture inage being nodified is

103

EXT_texture_compression_s3tc NVIDIA OpenGL Extension Specifications

COVPRESSED RGB_S3TC DXT1 _EXT, COMPRESSED RGBA S3TC DXT1_EXT,
COVPRESSED RGBA S3TC _DXT3_EXT, or COVMPRESSED RGBA _S3TC DXT5_EXT, the
texture is stored using one of the several S3TC conpressed texture imge
formats. Since the S3TC texture conpression algorithmsupports only 2D

i mges, ConpressedTexSubl magelDARB and ConpressedTexSubl mage3DARB produce
an | NVALID ENUM error if <format> is an S3TC format. Since S3TC i mages
are easily edited al ong 4x4 texel boundaries, the lintations on

Conpr essedTexSubl nage2D are rel axed. ConpressedTexSubl mage2D will result
in an I NVALI D OPERATION error only if one of the follow ng conditions
occurs:

* <width>is not a nultiple of four or equal to TEXTURE_W DTH.

* <height>is not a multiple of four or equal to TEXTURE_HEI GHT.

* <xoffset> or <yoffset>is not a nultiple of four.
The contents of any 4x4 bl ock of texels of an S3TC conpressed texture
i mge that does not intersect the area being nodifed are preserved during
val i d TexSubl nage2D and CopyTexSubl nmage2D cal | s.

Additions to Chapter 4 of the OpenG 1.2.1 Specification (Per-Fragnment
Operations and the Frame Buffer)

None.
Additions to Chapter 5 of the OpenG. 1.2.1 Specification (Special Functions)
None.

Additions to Chapter 6 of the OpenGL 1.2.1 Specification (State and
St at e Requests)

None.

Addi tions to Appendix A of the OpenCGL 1.2.1 Specification (lnvariance)
None.

Additions to the AG/ GLX/ WEL Specifications
None.

GLX Protocol
None.

Errors
I NVALI D_ENUM i s generated by ConpressedTex| nagelDARB or
Conpr essedTex| mnage3DARB i f <internalformat> is
COVPRESSED RGB_S3TC DXT1_EXT, COMPRESSED RGBA S3TC DXT1_EXT,
COVPRESSED RGBA S3TC DXT3_EXT, or COVPRESSED RGBA S3TC DXT5_EXT.
I NVALI D_OPERATI ON i s generated by ConpressedTexl mage2DARB if if
<internal fornmat> i s COVPRESSED RGB_S3TC DXT1_EXT,
COVPRESSED RGBA S3TC DXT1_EXT, COWPRESSED RGBA S3TC DXT3_EXT, or
COVPRESSED RGBA S3TC DXT5_EXT and <border> is not equal to zero.
I NVALI D_ENUM i s generated by ConpressedTexSubl magelDARB or
Conpr essedTexSubl mage3DARB i f <fornmat> i s COVPRESSED RGB_S3TC DXT1_EXT,
COVPRESSED RGBA S3TC DXT1_EXT, COWPRESSED RGBA S3TC DXT3_EXT, or
COVPRESSED RGBA S3TC_DXT5_EXT.

I NVALI D_OPERATI ON i s generated by TexSubl nage2D CopyTexSubl nage2D, or

104

NVIDIA OpenGL Extension Specifications EXT_texture_compression_s3tc

Conpr essedTexSubl nage2D i f | NTERNAL_FORMAT i s

COVPRESSED RGB_S3TC DXT1_EXT, COMPRESSED RGBA S3TC DXT1_EXT,

COVPRESSED RGBA_S3TC_DXT3_EXT, or COVMPRESSED RGBA S3TC DXT5_EXT and any of
the following apply: <width>is not a nultiple of four or equal to
TEXTURE_W DTH, <height> is not a nultiple of four or equal to

TEXTURE_HEI GHT; <xoffset> or <yoffset> is not a nultiple of four.

The following restrictions fromthe ARB texture_conpression specification
do not apply to S3TC texture formats, since subinage nodification is
straightforward as |ong as the subinage is properly aligned.

DELETE: | NVALI D_OPERATION i s generated by TexSubl magelD, TexSubl mage2D,

DELETE: TexSubl mage3D, CopyTexSubl magelD, CopyTexSubl mage2D, or

DELETE: CopyTexSubl mage3D if the internal format of the texture image is
DELETE: conpressed and <xoffset>, <yoffset> or <zoffset> does not equal
DELETE: -b, where b is value of TEXTURE_BORDER.

DELETE: | NVALI D _VALUE is generated by ConpressedTexSubl magelDARB,

DELETE: ConpressedTexSubl nage2DARB, or ConpressedTexSubl mage3DARB if the
DELETE: entire texture image is not being edited: if <xoffset>,

DELETE: <yoffset>, or <zoffset> is greater than -b, <xoffset> + <width> is
DELETE: |ess than w+b, <yoffset> + <height> is |ess than h+b, or <zoffset>
DELETE: + <depth> is |less than d+b, where b is the val ue of

DELETE: TEXTURE_BORDER, w is the value of TEXTURE_WDTH h is the value of
DELETE: TEXTURE_HEI GHT, and d is the value of TEXTURE_DEPTH.

See also errors in the GL_ARB_texture_conpression specification.

New St at e
None.

Appendi x
S3TC Conpressed Texture | nmage Fornmats
Conpressed texture i mages stored using the S3TC conpressed i nage formats
are represented as a collection of 4x4 texel blocks, where each bl ock
contains 64 or 128 bits of texel data. The image is encoded as a nornal
2D raster inmage in which each 4x4 block is treated as a single pixel. |If
an S3TC i mage has a width or height |less than four, the data correspondi ng
to texels outside the image are irrel evant and undefi ned.
When an S3TC image with a width of <w>, height of <h> and bl ock size of
<bl ocksi ze> (8 or 16 bytes) is decoded, the corresponding i mage size (in
bytes) is:

ceil (<w>/4) * ceil(<h>/4) * bl ocksize.

When decodi ng an S3TC i mage, the bl ock containing the texel at offset
(<x>, <y>) begins at an offset (in bytes) relative to the beginning of the
i mge of:

bl ocksize * (ceil (<w>/4) * floor(<y>/4) + floor(<x>/4)).

There are four distinct S3TC i mage fornats:

COVWPRESSED RGB_S3TC_DXT1_EXT: Each 4x4 bl ock of texels consists of 64
bits of RGB i mage data.

Each RGB i mage data block is encoded as a sequence of 8 bytes, called (in

105

EXT_texture_compression_s3tc NVIDIA OpenGL Extension Specifications

order of increasing address):
cO lo, ¢cO_hi, cl1 lo, ¢l hi, bits 0, bits_1, bits_ 2, bits 3

The 8 bytes of the block are decoded into three quantities:

colorO = cO lo + cO_hi * 256
colorl =cl_lo + cl_hi * 256
bits = bits_0 + 256 * (bits_1 + 256 * (bits_2 + 256 * bits_3))

color0 and colorl are 16-bit unsigned integers that are unpacked to
RGB col ors RGBO and RGB1 as though they were 16-bit packed pixels with
a <format> of RGB and a type of UNSI GNED _SHORT_5_6_5.

bits is a 32-bit unsigned integer, fromwhich a two-bit control code
is extracted for a texel at location (x,y) in the block using

code(x,y) = bits[2*(4*y+x) +1..2*(4*y+x) +0]

where bit 31 is the nost significant and bit 0 is the |east
significant bit.

The RGB color for a texel at location (x,y) in the block is given by:

RGBO, if colorO > colorl and code(x,y) ==
RGBL, if colorO > colorl and code(x,y) == 1
(2* RGBO+RGB1) / 3, if colorO > colorl and code(x,y) ==
(RGBO+2* RGB1) / 3, if colorO > colorl and code(x,y) == 3
RGBO, if colorO <= colorl and code(x,y) == 0
RGB1, if colorO <= colorl and code(x,y) ==
(RGBO+RGB1) / 2, if colorO <= colorl and code(x,y) == 2
BLACK, if colorO <= colorl and code(x,y) ==

Arithmetic operations are done per conponent, and BLACK refers to an
RGB col or where red, green, and blue are all zero

Since this imge has an RGB format, there is no al pha conponent and the
image is considered fully opaque

COVWPRESSED_RGBA_S3TC _DXT1_EXT: Each 4x4 bl ock of texels consists of 64
bits of RGB i mage data and m ni mal al pha information. The RGB conponents
of a texel are extracted in the sane way as COMPRESSED RGB_S3TC DXT1_EXT

The al pha conponent for a texel at location (x,y) in the block is
gi ven by:

0.0, if colorO <= colorl and code(x,y) == 3
1.0, ot herwi se

| MPORTANT: When encoding an RGBA image into a format using 1-bit

al pha, any texels with an al pha conponent less than 0.5 end up with an
al pha of 0.0 and any texels with an al pha conponent greater than or
equal to 0.5 end up with an al pha of 1.0. Wen encoding an RGBA i nage
into the COWRESSED RGBA S3TC DXT1_EXT format, the resulting red
green, and bl ue components of any texels with a final alpha of 0.0
will automatically be zero (black). |If this behavior is not desired
by an application, it should not use COVPRESSED RGBA S3TC DXT1_EXT.
This format will never be used when a generic conpressed interna
format (Table 3.16.2) is specified, although the nearly identica
format COMPRESSED RGB_S3TC DXT1_EXT (above) nay be.

106

NVIDIA OpenGL Extension Specifications EXT_texture_compression_s3tc

COVWPRESSED_RGBA _S3TC _DXT3_EXT: Each 4x4 bl ock of texels consists of 64
bits of unconpressed al pha i nage data followed by 64 bits of RGB i mage
dat a.

Each RGB i nage data bl ock is encoded according to the
COVPRESSED RGB _S3TC DXT1_EXT format, with the exception that the two code
bits al ways use the non-transparent encodings. |In other words, they are
treated as though color0 > colorl, regardl ess of the actual val ues of
color0 and colorl

Each al pha i mage data bl ock is encoded as a sequence of 8 bytes, called
(in order of increasing address):

a0, al, a2, a3, a4, a5, a6, a7
The 8 bytes of the block are decoded into one 64-bit integer:

al pha = a0 + 256 * (al + 256 * (a2 + 256 * (a3 + 256 * (a4 +
256 * (ab + 256 * (a6 + 256 * a7))))))

al pha is a 64-bit unsigned integer, fromwhich a four-bit al pha val ue
is extracted for a texel at location (x,y) in the block using

al pha(x,y) = bits[4*(4*y+x)+3..4*(4*y+x) +0]

where bit 63 is the nost significant and bit 0 is the |east
significant bit.

The al pha conponent for a texel at location (x,y) in the block is

gi ven by al pha(x,y) / 15.
COVPRESSED RGBA S3TC DXT5_EXT: Each 4x4 bl ock of texels consists of 64
bits of conpressed al pha i mage data foll owed by 64 bits of RGB i mage data
Each RGB i mage data bl ock is encoded according to the
COVPRESSED RGB _S3TC DXT1_EXT format, with the exception that the two code
bits always use the non-transparent encodings. In other words, they are
treated as though color0O > colorl, regardless of the actual values of
color0 and colorl

Each al pha i nage data bl ock is encoded as a sequence of 8 bytes, called
(in order of increasing address):

al phaO, al phal, bits_0, bits_1, bits_2, bits_3, bits_4, bits_ 5

The al pha0 and al phal are 8-bit unsigned bytesw converted to al pha
conponents by multiplying by 1/255

The 6 "bits" bytes of the block are decoded into one 48-bit integer

bits = bits 0 + 256 * (bits_1 + 256 * (bits_ 2 + 256 * (bits_3 +
256 * (bits 4 + 256 * bits_5))))

bits is a 48-bit unsigned integer, fromwhich a three-bit control code
is extracted for a texel at location (x,y) in the block using

code(x,y) = bits[3*(4*y+x)+1..3*(4*y+x) +0]

where bit 47 is the nost significant and bit 0 is the |east
significant bit.

107

EXT_texture_compression_s3tc NVIDIA OpenGL Extension Specifications

The al pha conponent for a texel at location (x,y) in the block is

gi ven by:
al pha0, code(x,y) ==
al phal, code(x,y) == 1
(6*al pha0 + 1*al phal)/7, alpha0 > al phal and code(x,y) == 2
(5*al pha0 + 2*al phal)/7, alpha0 > al phal and code(x,y) == 3
(4*al pha0 + 3*al phal)/7, alpha0 > al phal and code(x,y) == 4
(3*al pha0 + 4*al phal)/7, alpha0 > al phal and code(x,y) == 5
(2*al pha0 + 5*al phal)/7, alpha0 > al phal and code(x,y) == 6
(1*al pha0 + 6*al phal)/7, alpha0 > al phal and code(x,y) == 7
(4*al pha0 + 1*al phal)/5, alpha0 <= al phal and code(x,y) == 2
(3*al pha0 + 2*al phal)/5, alpha0 <= al phal and code(x,y) == 3
(2*al pha0 + 3*al phal)/5, alphaO <= al phal and code(x,y) == 4
(1*al phaO + 4*al phal)/5, alphaO <= al phal and code(x,y) == 5
0.0, al pha0 <= al phal and code(x,y) == 6
1.0, al pha0 <= al phal and code(x,y) == 7

Revi si on History

1.0, 07/07/00 prbrownl: Published final version agreed to by working
group menbers

0.9, 06/24/00 prbrownl: Docunented that bl ock-aligned TexSubl nage calls
do not nodify existing texels outside the
nmodi fi ed bl ocks. Added caveat to allow for a
(0, 0)-anchored TexSubl nage operation of
arbitrary size.

0.7, 04/11/00 prbrownl: Added issues on DXT1, DXT3, and DXT5 encodi ngs
where the MSDN documentati on doesn’t match what
is really done. Added enum values fromthe
extension registry.

0.4, 03/28/00 prbrownl: Updated to reflect final version of the
ARB _t ext ure_conpressi on extension. Allowed
bl ock-al i gned TexSubl nage calls

0.3, 03/07/00 prbrownl: Resolved issues pertaining to the format of RGB
bl ocks in the DXT3 and DXT5 formats (they don't
ever use the "transparent" encoding). Fixed
decodi ng of DXT1 bl ocks. Pointed out issue of
"transparent" texels in DXT1 encodings having
di fferent behaviors for RGB and RGBA interna
formats.

0.2, 02/23/00 prbrownl: Mnor revisions; added several issues

0.11, 02/17/00 prbrownl: Slight nodification to error semantics
(I NVALI D_ENUM i nst ead of | NVALI D_OPERATI ON) .

0.1, 02/15/00 prbrownl: Initial revisio

108

NVIDIA OpenGL Extension Specifications EXT_texture_cube_map

Nanme
EXT_t exture_cube_map
Nanme Strings
GL_EXT texture_cube_nap
Noti ce
Copyright NvIDI A Corporation, 1999.
Ver si on
January 13, 2000
Nurnber
ARB version is "ARB extension #6"

Because this extension was pronoted froman EXT to ARB extension
bef ore an extension nunmber was assigned, this extension has no
ext ensi on nunber.

Dependenci es
None.

Witten based on the wording of the Qpen@ 1.2 specification but
not dependent on it.

Overvi ew

Thi s extension provides a new texture generation scheme for cube
map textures. Instead of the current texture providing a 1D, 2D

or 3D lookup into a 1D, 2D, or 3D texture image, the texture is a
set of six 2D images representing the faces of a cube. The (s,t,r)
texture coordinates are treated as a direction vector emanating from
the center of a cube. At texture generation tinme, the interpolated
per-fragment (s,t,r) selects one cube face 2D i nage based on the

| argest nmagni tude coordinate (the major axis). A new 2D (s,t) is
cal cul ated by dividing the two other coordinates (the m nor axes
val ues) by the major axis value. Then the new (s,t) is used to

| ookup into the selected 2D texture inage face of the cube map.

Unli ke a standard 1D, 2D, or 3D texture that have just one target,

a cube map texture has six targets, one for each of its six 2D texture
i mge cube faces. Al these targets nust be consistent, conplete,

and have a square di nension.

Thi s extension al so provides two new texture coordi nate generati on nodes
for use in conjunction with cube nmap texturing. The reflection map

node generates texture coordinates (s,t,r) matching the vertex’'s
eye-space reflection vector. The reflection nmap node

is useful for environnent mapping without the singularity inherent

in sphere mappi ng. The nornmal map node generates texture coordinates
(s,t,r) matching the vertex's transformed eye-space

109

EXT_texture_cube_map NVIDIA OpenGL Extension Specifications

normal . The normal map node is useful for sophisticated cube
map texturing-based diffuse |ighting nodels.

The intent of the new texgen functionality is that an application using
cube map texturing can use the new texgen nodes to automatically
generate the reflection or normal vectors used to | ook up into the

cube map texture.

An application note: Wen using cube mapping with dynam ¢ cube

maps (neaning the cube map texture is re-rendered every frame),

by keeping the cube map’s orientation pointing at the eye position,
the texgen-conputed reflection or nornmal vector texture coordi nates
can be always properly oriented for the cube map. However if the
cube map is static (neaning that when view changes, the cube map
texture is not updated), the texture matri x nust be used to rotate
the texgen-conputed reflection or normal vector texture coordinates
to match the orientation of the cube nmap. The rotation can be
conput ed based on two vectors: 1) the direction vector fromthe cube
map center to the eye position (both in world coordi nates), and 2)
the cube map orientation in world coordi nates. The axis of rotation
is the cross product of these two vectors; the angle of rotation is
the arcsin of the dot product of these two vectors.

| ssues

Shoul d we place the nornal/reflection vector in the (s,t,r) texture
coordi nates or (s,t,q) coordinates?

RESOLUTION: (s,t,r). Even if hardware uses "q" for the third
conponent, the APl should claimto support generation of (s,t,r)
and let the texture matrix (through a concatenation with the
user-supplied texture matrix) nmove "r" into "

q".

Shoul d the texture coordi nate generation functionality for cube
mappi ng be specified as a distinct extension fromthe actual cube
map texturing functionality?

RESOLUTI ON: NO. Real applications and real inplenentations of

cube mapping will tie the texgen and texture generation functionality
together. Applications won't have to query two separate

ext ensi ons then.

While applications will alnpbst always want to use the texgen
functionality for automatically generating the reflection or nornal
vector as texture coordinates (s,t,r), this extension does perm:t
an application to manually supply the reflection or nornal vector

t hrough gl TexCoord3f explicitly.

Note that the NV_texgen_reflection extension does "unbundl e"
the texgen functionality from cube naps.

Shoul d you be able to have sonme texture coordi nates conputing
REFLECTI ON_MAP_EXT and others not? Sanme question with NORVAL MAP_EXT

RESOLUTION: YES. This is the way that SPHERE MAP works. It is
not clear that this would ever be useful though

110

NVIDIA OpenGL Extension Specifications EXT_texture_cube_map

Shoul d sonet hi ng special be said about the handling of the q
texture coordinate for this spec?

RESOLUTI ON: NO. But the followi ng paragraph is useful for
i npl enentors concerned about the handling of q.

The REFLECTI ON_MAP_EXT and NORMAL_ MAP_EXT nodes are intended to supply
reflection and normal vectors for cube map texturing hardware.

When t hese nbdes are used for cube nap texturing, the generated
texture coordi nates can be thought of as a reflection vector.

The val ue of the q texture coordinate then sinply scales the

vector but does not change its direction. Because only the vector
direction (not the vector nmagnitude) matters for cube map texturing,

i npl enentations are free to | eave q undefi ned when any of the s,

t, or r texture coordi nates are generated usi ng REFLECTI ON MAP_EXT

or NORMAL_MAP_EXT

How shoul d the cube faces be | abel ed?

RESOLUTI ON: Match the render nman specification’s nanes of
(positive X), "nx" (negative x), "py", "ny", "pz", and "nz".

There does not actually need to be an "ordering for the faces"
(Direct3D 7.0 does number their cube map faces.) For this

extension, the synbolic target nanmes (TEXTURE CUBE MAP_PCSI Tl VE_X EXT,
etc) is sufficient without requiring any specific ordering.

pX

What coordi nate system convention should be used? LHS or RHS?

RESOLUTI ON: The coordi nate systemis left-handed if you think
of yourself within the cube. The coordinate systemis
ri ght-handed if you think of yourself outside the cube

Thi s mat ches the convention of the RenderMan interface. |If

you | ook at Figure 12.8 (page 265) in "The Render Man Conpani on",
think of the cube being folded up with the observer inside

the cube. Then the coordinate system convention is

| ef t - handed.

The spec just linearly interpolates the reflection vectors conputed
per-vertex across polygons. |Is there a probleminterpolating
reflection vectors in this way?

Probably. The better approach would be to interpolate the eye
vector and nornmal vector over the polygon and performthe reflection
vector conputation on a per-fragnent basis. Not doing so is likely
to lead to artifacts because angul ar changes in the normal vector
result in twice as large a change in the reflection vector as nornal
vector changes. The effect is likely to be reflections that becone
glancing reflections too fast over the surface of the pol ygon.

Note that this is an issue for REFLECTI ON MAP_EXT, but not
NORMAL_MAP_EXT.

VWhat happens if an (s,t,q) is passed to cube map generation that
is close to (0,0,0), ie. a degenerate direction vector?

RESOLUTI ON: Leave undefined what happens in this case (but

111

EXT_texture_cube_map NVIDIA OpenGL Extension Specifications

may not lead to GL interruption or termnation).

Note that a vector close to (0,0,0) may be generated as a
result of the per-fragnent interpolation of (s,t,r) between
vertices.

Do we need a distinct proxy texture nechanismfor cube nap
textures?

RESOLUTI ON: YES. Cube map textures take up six tines the
nmenory as a conventional 2D inage texture so proxy 2D texture
determi nations won't be of value for a cube map texture.

Cube maps need their own proxy target.

Should we require the 2D texture inage width and height to
be identical (ie, square only)?

RESCLUTION: YES. This linmtation is quite a reasonable Iimtation
and DirectX 7 has the sane linmtation

This restriction is enforced by generating an | NVALI D VALUE
when cal ling Texl nage2D or CopyTexl mage2D with a non-equa
wi dt h and hei ght.

Sone consideration was given to enforcing the "squarness"
constraint as a texture consistency constraint. This is
confusi ng however since the squareness is known up-front

at texture image specification time so it seenms confusing
to silently report the usage error as a texture consistency
i ssue.

Texture consistency still says that all the level O textures
of all six faces nust have the sane square size.

I f some conbination of 1D, 2D, 3D, and cube map texturing is
enabl ed, which really operates?

RESOLUTI ON: Cube map texturing. In OpenG. 1.2, 3D takes
priority over 2D takes priority over 1D. Cube napping should
take priority over all conventional n-dinensional texturing
schenes.

Does anything need to be said about comnbining cube mapping with
mul titexture?

RESOLUTI ON: NO. Cube nmappi ng shoul d be avail abl e on either
texture unit. The hardware should fully orthogonal in its handling
of cube map textures.

Does it nake sense to support borders for cube map textures.

Actually, it does. It would be nice if the texture border pixels
match the appropriate texels fromthe edges of the other cube map
faces that they junction with. For this reason, we'll |eave the

texture border capability inplicitly supported.

How does nipmap | evel -of -detail selection work for cube map

112

NVIDIA OpenGL Extension Specifications EXT_texture_cube_map

textures?
The existing spec’s | anguage about LOD selection is fine.

Shoul d the inplenentation dependent value for the maxi mum
texture size for a cube map be the sane as MAX TEXTURE_ SI ZE?

RESOLUTI ON: NO. Open@ 1.2 has a different MAX 3D TEXTURE_SI ZE

for 3D textures, and cube maps should take six tinmes nore space

than a 2D texture map of the same width & height. The inplenentation
dependent MAX CUBE_MAP_TEXTURE_SI ZE EXT constant should be used for
cube maps then.

Note that the proxy cube nmap texture provides a better way to
find out the maxi mum cube map texture size supported since the
proxy mechani smcan take into account the internal format, etc.

In section 3.8.10 when the "l argest magni tude coordi nate direction"
i s choosen, what happens if two or nore of the coordinates (rx,ry,rz)
have the identical nmagnitude?

RESCLUTI ON: I npl ement ati ons can define their own rule to choose

the | argest magni tude coordinate directi on whne two or nore of the
coordi nates have the identical nagnitude. The only restriction is
that the rule nust be deterministic and depend only on (rx,ry,rz).

In practice, (s,t,r) is interpolated across polygons so the cases
where |s|==|t|, etc. are pretty arbitary (the equality depends on

i nterpol ation precision). This extension could mandate a particul ar
rul e, but that seens heavy-handed and there is no good reason that
nul tipl e vendors should be forced to inplenent the sane rule.

Shoul d there be linmts on the supported border nodes for cube nmaps?

RESOLUTI ON: NO. The specificiation is witten so that cube map
texturing proceeds just |ike conventional 2D texture mappi ng once
the face deternination is made.

Therefore, all Open@ texture wap nodes should be supported though
sonme nodes are clearly inappropriate for cube maps. The WRAP node
is alnpst certainly incorrect for cube maps. Likew se, the CLAWP
node wi thout a texture border is alnpst certainly incorrect for cube
maps. CLAMP when a texture border is present and CLAMP_TO EDGE are
bot h reasonably suited for cube maps. Ideally, CLAMP with a texture
border works best if the cube map edges can be replicated in the
approriate texture borders of adjacent cube map faces. |n practice,
CLAMP_TO EDGE works reasonably well in nost circunstances.

Per haps anot her extension could support a special cube map wap

node that automatically waps individual texel fetches to the

appropriate adjacent cube nmap face. The benefit from such a node

is small and the inplenmentation conplexity is involved so this wap

node shoul d not be required for a basic cube map texture extension
How is m pmap LOD sel ection handl ed for cube map textures?

RESCLUTI ON: The specification is witten so that cube map texturing

113

EXT_texture_cube_map NVIDIA OpenGL Extension Specifications

proceeds just |ike conventional 2D texture mapping once the face
determination is nade

Thereforce, the partial differentials in Section 3.8.5 (page
126) should be evaluated for the u and v paranmeters based on the
post-face deternmination s and t.

In Section 2.10.3 "Normal Transformation", there are several versions
of the eye-space nornmal vector to choose from \Which one should
the NORVAL_MAP_ARB t exgen node use?

RESOLUTION: nf. The nf vector is the final normal, post-rescale
normal and post-normalize. |In practice, the rescale normal and
normal i ze operations do not change the direction of the vector

so the choice of which version of transformed normal is used is
not inportant for cube maps.

Procedur es and Functions
None
Tokens

Accepted by the <parant paraneters of TexGend, TexGenf, and TexGen
when <pname> paraneter i s TEXTURE GEN MODE:

NORMAL_MAP_EXT 0x8511
REFLECTI ON_MAP_EXT 0x8512

When t he <pnane> paraneter of TexGendv, TexGenfv, and TexGeniv is
TEXTURE_CGEN MODE, then the array <parans> nay al so contain
NORVAL _MAP_EXT or REFLECTI ON_MAP_EXT.

Accepted by the <cap> paraneter of Enable, Disable, |sEnabled, and
by the <pname> paraneter of GetBool eanv, Getlntegerv, GCetFloatv,
and Get Doubl ev, and by the <target> paraneter of Bi ndTexture,

Get TexPar aneterfv, GetTexParaneteriv, TexParanmeterf, TexParaneteri,
TexParameterfv, and TexParaneteriv:

TEXTURE_CUBE_MAP_EXT 0x8513

Accepted by the <pnane> paraneter of GetBool eanv, Getlntegerv,
Get Fl oat v, and Get Doubl ev:

TEXTURE_BI NDI NG_CUBE_MAP_EXT 0x8514
Accepted by the <target> paraneter of GetTexl nage,

Get TexLevel Paraneteriv, GetTexLevel Paraneterfv, Texlnage2D,
CopyTex| mage2D, TexSubl nage2D, and CopySubTex| mage2D:

TEXTURE_CUBE_MAP_PCS| Tl VE_X_EXT 0x8515
TEXTURE_CUBE_MAP_NEGATI VE_X_EXT 0x8516
TEXTURE_CUBE_MAP_PCSI TI VE_Y_EXT 0x8517
TEXTURE_CUBE_MAP_NEGATI VE_Y_EXT 0x8518
TEXTURE_CUBE_MAP_PCS| Tl VE_Z_EXT 0x8519
TEXTURE_CUBE_MAP_NEGATI VE_Z_EXT 0x851A

114

NVIDIA OpenGL Extension Specifications EXT_texture_cube_map

Accepted by the <target> paraneter of GetTexLevel Paraneteriv,
Get TexLevel Paraneterfv, GetTexParaneteriv, and Texl nage2D:

PROXY_TEXTURE_CUBE_MAP_EXT 0x851B

Accepted by the <pnane> paraneter of GetBool eanv, Get Doubl ev,
Get |l ntegerv, and GetFl oatv:

MAX_CUBE_MAP_TEXTURE_SI ZE_EXT 0x851C
Additions to Chapter 2 of the 1.2 Specification (QpenG. Operation)
-- Section 2.10.4 "Generating Texture Coordinates"
Change the last sentence in the 1st paragraph to:

"I f <pname> is TEXTURE_GEN MODE, then either <parans> points to
or <parane» is an integer that is one of the synbolic constants
OBJECT_LI NEAR, EYE_LI NEAR, SPHERE NAP, REFLECTI ON_MAP_EXT, or
NORVAL_MVAP_EXT. "

Add these paragraphs after the 4th paragraph:

"I f TEXTURE_GEN MODE i ndi cates REFLECTI ON MAP_EXT, conpute the
reflection vector r as described for the SPHERE MAP node. Then the
val ue assigned to an s coordinate (the first TexGen argunent val ue
isS) is s =rx; the value assigned to at coordinate is t = ry;
and the value assigned to a r coordinate is r =rz. Calling TexGen
with a <coord> of Q when <pnane> indi cates REFLECTI ON MAP_EXT
generates the error | NVALI D ENUM

| f TEXTURE_GEN _MODE i ndi cat es NORMAL_MAP_EXT, conpute the nornal
vector nf as described in section 2.10.3. Then the val ue assigned
to an s coordinate (the first TexGen argunent value is S) is s =
nfx; the value assigned to at coordinate ist = nfy; and the

val ue assigned to a r coordinate is r = nfz. (The values nfx, nfy,
and nfz are the conmponents of nf.) Calling TexCGen with a <coord>
of Q when <pnane> indi cates NORMAL_MAP_EXT generates the error

| NVALI D_ENUM

The | ast paragraph’s first sentence should be changed to:
"The state required for texture coordi nate generati on conprises a
five-valued integer for each coordinate indicating coordinate
gener ati on node, "
Additions to Chapter 3 of the 1.2 Specification (Rasterization)
-- Section 3.6.5 "Pixel Transfer Operations" under "Convol ution"
Change this paragraph to say:
"I f CONVOLUTION 2D i s enabl ed, the two-di nensional convol ution
filter is applied only to the two-di nmensional inmages passed to
Dr awPi xel s, CopyPi xel s, ReadPi xel s, Texl nmage2D, TexSubl mage2D,

CopyTex| mage2D, CopyTexSubl mage2D, and CopyTexSubl mage3D, and
returned by GetTexlmage with one of the targets TEXTURE_2D,

115

EXT_texture_cube_map NVIDIA OpenGL Extension Specifications

TEXTURE_CUBE_MAP_POSI TI VE_X_EXT, TEXTURE_CUBE_MAP_NEGATI VE_X_EXT,
TEXTURE_CUBE_MAP_POSI TI VE_Y_EXT, TEXTURE_CUBE_MAP_NEGATI VE_Y_EXT,
TEXTURE_CUBE_MAP_PCSI TI VE_Z EXT, or TEXTURE_CUBE_MAP_NEGATI VE_Z EXT."

-- Section 3.8.1 "Texture |Inage Specification”
Change the first full sentence on page 117 to:

"<target> nust be one of TEXTURE 2D for a 2D texture, or one of
TEXTURE_CUBE_MAP_PCSI Tl VE_X_EXT, TEXTURE_CUBE_MAP_NEGATI VE_X_ EXT,
TEXTURE_CUBE_MAP_PCSI Tl VE_Y_EXT, TEXTURE_CUBE_MAP_NEGATI VE_Y_EXT,
TEXTURE_CUBE_MAP_POSI TI VE_Z_EXT, or TEXTURE_CUBE_MAP_NEGATI VE_Z_EXT
for a cube map texture. Additionally, <target> can be either
PROXY_TEXTURE_2D for a 2D proxy texture or PROXY_TEXTURE_CUBE_MAP_EXT
for a cube nmap proxy texture as discussed in section 3.8.7."

Add the follow ng paragraphs after the first paragraph on page 117

"A 2D texture consists of a single 2D texture image. A cube

map texture is a set of six 2D texture inmages. The six cube map
texture targets forma single cube nap texture though each target
nanes a distinct face of the cube map. The TEXTURE CUBE_NMAP_* EXT
targets listed above update their appropriate cube map face 2D
texture image. Note that the six cube map 2D i mage tokens such as
TEXTURE_CUBE_MAP_PCSI TI VE_X EXT are used when specifying, updating,
or querying, one of a cube map’s six 2D i nage, but when enabling
cube map texturing or binding to a cube map texture object (that is
when the cube map is accessed as a whole as opposed to a particul ar
2D image), the TEXTURE CUBE MAP_EXT target is specified.

When the target paraneter to Texlnmage2D is one of the six cube map
2D image targets, the error INVALID VALUE is generated if the width
and hei ght paraneters are not equal

If cube map texturing is enabled at the time a primtive is
rasterized and if the set of six targets are not "cube conplete",
then it is as if texture mapping were disabled. The targets of
a cube nmap texture are "cube conplete" if the array 0 of all six
targets have identical and square dinensions, the array 0 of all
six targets were specified with the sane internal format, and

the array 0 of all six targets have the sanme border w dth."

After the 14th paragraph add:
"In a simliar fashion, the maxi nrum all owabl e wi dth and hei ght
(they nmust be the sane) of a cube nmap texture nmust be at | east
27"(k-1od)+2bt for inage arrays level O through k, where k is the
| og base 2 of MAX_CUBE_MAP_TEXTURE_SI ZE_EXT.'

-- Section 3.8.2 "Alternate Texture | mge Specificati on Commands"
Updat e the second paragraph (page 120) to say:
. "Currently, <target> nust be
TEXTURE_2D, TEXTURE_CUBE_NMAP_POCSI Tl VE_X_EXT,

TEXTURE_CUBE_MAP_NEGATI VE_X_EXT, TEXTURE_CUBE_MAP_POSI Tl VE_Y_EXT,
TEXTURE_CUBE_MAP_NEGATI VE_Y_EXT, TEXTURE_CUBE_MAP_POSI Tl VE_Z_EXT,

116

NVIDIA OpenGL Extension Specifications EXT_texture_cube_map

or TEXTURE_CUBE_MAP_NEGATI VE_Z_ EXT. "
Add after the second paragraph (page 120), the follow ng:

"When the target paranmeter to CopyTexl mage2D is one of the six cube
map 2D i mage targets, the error INVALID VALUE is generated if the
wi dt h and hei ght paraneters are not equal."

Update the fourth paragraph (page 121) to say:

. "Currently the target argunments of TexSubl magelD and

CopyTexSubl magelD nust be TEXTURE 1D, the <target> argunents of
TexSubl mage2D and CopyTexSubl mage2D nmust be one of TEXTURE 2D
TEXTURE_CUBE_MAP_PCSI Tl VE_X_EXT, TEXTURE_CUBE_MAP_NEGATI VE_X_ EXT,
TEXTURE_CUBE_MAP_PCSI Tl VE_Y_EXT, TEXTURE_CUBE_MAP_NEGATI VE_Y_EXT,
TEXTURE_CUBE_MAP_PCSI Tl VE_Z_EXT, or TEXTURE_CUBE_MAP_NEGATI VE_Z_EXT,
and the <target> arguments of TexSubl mage3D and CopyTexSubl mage3D
nmust be TEXTURE 3D."

-- Section 3.8.3 "Texture Paraneters"”
Change paragraph one (page 124) to say:

. "<target> is the target, either TEXTURE 1D
TEXTURE_2D, TEXTURE_3D, or TEXTURE_CUBE_MAP_EXT. "

Add a final paragraph saying:

"Texture parameters for a cube map texture apply to cube nap
as a whole; the six distinct 2D texture inmages use the
texture paraneters of the cube map itself.

-- Section 3.8.5 "Texture Mnification" under "M pmappi ng"
Change the first full paragraph on page 130 to:

"I'f texturing is enabled for one-, two-, or three-dinmensiona
texturing but not cube map texturing (and TEXTURE_M N_FI LTER
is one that requires a mpnap) at the tinme a primtive is
rasterized and if the set of arrays TEXTURE BASE LEVEL through q =
m n{p, TEXTURE_MAX LEVEL} is inconplete, based on the dinensions of
array 0, then it is as if texture mappi ng were disabled."

Foll ow the first full paragraph on page 130 with:

"I'f cube map texturing is enabled and TEXTURE M N FILTER is one that
requires mpmap levels at the tinme a primtive is rasterized and

if the set of six targets are not "mi pmap cube conplete", then it

is as if texture nmapping were disabled. The targets of a cube nmap
texture are "m pmap cube conplete"” if the six cube map targets are
"cube conplete" and the set of arrays TEXTURE BASE LEVEL t hrough

g are not inconplete (as described above)."

-- Section 3.8.7 "Texture State and Proxy State"

Change the first sentence of the first paragraph (page 131) to say:

117

EXT_texture_cube_map NVIDIA OpenGL Extension Specifications

"The state necessary for texture can be divided into two categori es.
First, there are the nine sets of mpnap arrays (three for the one-,
two-, and three-dimensional texture targets and six for the cube
map texture targets) and their number."

Change the second paragraph (page 132) to say:

“In addition to the one-, two-, three-dinensional, and the six cube
map sets of inage arrays, the partially instantiated one-, two-,
and three-di nensi onal and one cube map sets of proxy inmage arrays
are mai ntai ned. "

After the third paragraph (page 132) add:

"The cube map proxy arrays are operated on in the sane manner

when Texl mage2D is executed with the <target> field specified as
PROXY_TEXTURE_CUBE_MAP_EXT with the addition that determ ning that a
gi ven cube map texture is supported with PROXY_TEXTURE_CUBE_MAP_EXT
indicates that all six of the cube map 2D i mages are support ed.

Li kewi se, if the specified PROXY TEXTURE CUBE MAP_EXT is not
supported, none of the six cube map 2D i mages are supported.”

Change the second sentence of the fourth paragraph (page 132) to:

"Ther ef ore PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, PROXY_TEXTURE_3D,
and PROXY_TEXTURE CUBE MAP_EXT cannot be used as textures, and their
i mges nmust never be queried using Cet Texl mage."

-- Section 3.8.8 "Texture (bjects”
Change the first sentence of paragraph one (page 133) to say:

"In addition to the default textures TEXTURE 1D, TEXTURE 2D
TEXTURE 3D, and TEXTURE CUBE_MAP_EXT, naned one-, two-,

and three-di nensional texture objects and cube nap texture objects
can be created and operated on."

Change the second paragraph (page 133) to say:

"A texture object is created by binding an unused nane to
TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, or TEXTURE_CUBE_MAP_EXT. "
"I'f the new texture object is bound to TEXTURE 1D, TEXTURE 2D
TEXTURE_3D, or TEXTURE_CUBE_MAP_EXT, it remains a one-, two-,
three-di nensi onal, or cube nap texture until it is deleted."

Change the third paragraph (page 133) to say:

"Bi ndTexture may al so be used to bind an existing texture object to
ei ther TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, or TEXTURE_CUBE_MAP_EXT. "

Change paragraph five (page 133) to say:

“In the initial state, TEXTURE 1D, TEXTURE 2D, TEXTURE 3D

and TEXTURE _CUBE_MAP have one-di nensi onal, two-di nensional

t hree-di nensi onal, and cube nmap state vectors associ ated

with themrespectively." ... "The initial, one-di nmensional

t wo- di nensi onal, three-dinmensional, and cube nap texture is therefore

118

NVIDIA OpenGL Extension Specifications EXT_texture_cube_map

operated upon, queried, and applied as TEXTURE 1D, TEXTUER 2D
TEXTURE_3D, and TEXTURE_CUBE_NMAP_EXT respectively while 0 is bound
to the corresponding targets."

Change paragraph six (page 134) to say:

... "If atexture that is currently bound to one of the targets
TEXTURE 1D, TEXTURE 2D, TEXTURE 3D, or TEXTURE CUBE MAP_EXT is

deleted, it is as though Bi ndTexture has been executed with the
same <target> and <texture> zero."

-- Section 3.8.10 "Texture Application”

Repl ace t he begi nning sentences of the first paragraph (page 136)
wi t h:

"Texturing is enabled or disabled using the generic Enable

and Di sabl e commands, respectively, with the synmbolic constants
TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, or TEXTURE_CUBE_MAP_EXT to enable
t he one-di nmensi onal, two-di nensional, three-dinensional, or cube

map texturing respectively. |If both two- and one-di nmensi ona
textures are enabl ed, the two-dinensional texture is used. |If the
three-di nensi onal and either of the two- or one-di nensional textures
is enabled, the three-dinensional texture is used. |If the cube map
texture and any of the three-, two-, or one-dinensional textures is
enabl ed, then cube nmap texturing is used. |If texturing is disabled,

a rasterized fragnent is passed on unaltered to the next stage of the
G (although its texture coordi nates may be di scarded). O herwi se,

a texture value is found according to the paraneter val ues of the
currently bound texture i mage of the appropriate dinensionality.

However, when cube map texturing is enabled, the rules are

nore conplicated. For cube map texturing, the (s,t,r) texture
coordinates are treated as a direction vector (rx,ry,rz) emanating
fromthe center of a cube. (The g coordinate can be ignored since
it merely scales the vector without affecting the direction.) At
texture application time, the interpolated per-fragment (s,t,r)

sel ects one of the cube map face’'s 2D i mage based on the | argest
magni t ude coordinate direction (the major axis direction). If two
or nore coordi nates have the identical nmagnitude, the inplenentation
may define the rule to disanbiguate this situation. The rule nust
be deterministic and depend only on (rx,ry,rz). The target columm
in the table bel ow explains howthe major axis direction maps to the
2D image of a particular cube map target.

maj or axis

direction tar get sc tc ma
+r X TEXTURE_CUBE_NMAP_POSI Tl VE_X_EXT -rz -ry rx
-rX TEXTURE_CUBE_NMAP_NEGATI VE_X_EXT trz -ry rx
+ry TEXTURE_CUBE_NMAP_POSI Tl VE_Y_EXT +r X +rz ry
-ry TEXTURE_CUBE_MAP_NEGATI VE_Y_EXT +r X -rz ry
+rz TEXTURE_CUBE_MAP_POCSI Tl VE_Z_EXT +r X -ry rz
-rz TEXTURE_CUBE_NMAP_NEGATI VE_Z_EXT -rX -ry rz

Using the sc, tc, and na deternined by the major axis direction as
specified in the table above, an updated (s,t) is calcul ated as

119

EXT_texture_cube_map NVIDIA OpenGL Extension Specifications

(sc/|lm| +1) [/ 2

(tc/|m| +21) 1/ 2

If |ma| is zero or very nearly zero, the results of the above two
equati ons need not be defined (though the result may not lead to
GL interruption or termnation).

This new (s,t) is used to find a texture value in the determ ned
face's 2D texture inage using the rules given in sections 3.8.5
and 3.8.6."

Additions to Chapter 4 of the 1.2 Specification (Per-Fragnment Operations
and the Frane Buffer)

None
Additions to Chapter 5 of the 1.2 Specification (Special Functions)
-- Section 5.4 "Display Lists"

In the second to the |ast paragraph (page 179), add
PROXY_TEXTURE_CUBE_MAP_EXT to the list of PROXY_* tokens.

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)
-- Section 6.1.3 "Enunerated Queries"
Change the fourth paragraph (page 183) to say:

"The Get TexParaneter paraneter <target> may be one of TEXTURE 1D
TEXTURE 2D, TEXTURE 3D, or TEXTURE CUBE_MAP_EXT, indicating the
currently bound one-di nmensi onal, two-dinensional, three-di mensional
or cube map texture object. For GetTexLevel Paraneter,

<target> may be one of TEXTURE 1D, TEXTURE 2D, TEXTURE 3D,
TEXTURE_CUBE_MAP_POCSI TI VE_X_EXT, TEXTURE_CUBE_MAP_NEGATI VE_X_EXT,
TEXTURE_CUBE_MAP_POCSI TI VE_Y_EXT, TEXTURE_CUBE_MAP_NEGATI VE_Y_EXT,
TEXTURE_CUBE_MAP_PCSI Tl VE_Z_EXT, TEXTURE_CUBE_MAP_NEGATI VE_Z_ EXT,
PROXY_TEXTURE_1D, PROXY_TEXTURE 2D, PROXY_TEXTURE_3D, or
PROXY_TEXTURE_CUBE_MAP_EXT, indicating the one-di nensional

t wo- di mensi onal , three-dinensional texture object, or distinct
cube map texture 2D i mage, or one-di nensional, two-dinmensional
three-di nensi onal, or cube nap proxy state vector. Note that
TEXTURE_CUBE_MAP_EXT is not a valid <target> paraneter for

Get TexLevel Par anet er because it does not specify a particular cube
map face."

-- Section 6.1.4 "Texture Queries"
Change the first paragraph to read:
) "I't is sonewhat different fromthe other get commands; <tex>
is a synmbolic value indicating which texture (or texture face in the
case of a cube nmap texture target nane) is to be obtained.

TEXTURE 1D i ndi cates a one-di nmensi onal texture, TEXTURE 2D
i ndicates a two-di nensional texture, TEXTURE 3D indicates a

120

NVIDIA OpenGL Extension Specifications EXT_texture_cube_map

three-di nensi onal texture, and TEXTURE CUBE NMAP_PCSI Tl VE X EXT,
TEXTURE_CUBE_MAP_NEGATI VE_X_EXT, TEXTURE_CUBE_MAP_POSI Tl VE_Y_EXT,
TEXTURE_CUBE_MAP_NEGATI VE_Y_EXT, TEXTURE_CUBE_MAP_POSI Tl VE_Z_ EXT,
and TEXTURE CUBE_MAP_NEGATI VE Z EXT indicate the respective face of
a cube nmap texture.

Additions to the G.X Specification
None
Errors

| N\VALI D ENUM i s generated when TexGen is called with a <coord> of Q
when <pname> i ndi cat es REFLECTI ON_MAP_EXT or NORMAL_MAP_EXT.

| N\VALI D VALUE is generated when the target paraneter to Texl nmage2D
or CopyTexlmage2D is one of the six cube map 2D i mage targets and
the width and hei ght paraneters are not equal.

New St at e

(table 6.12, p202) add the fol lowng entries:

Gt Val ue Type Gt G@mand Initial Value Description Sc Atribute
TEXTURE_ A.BE MAP_EXT B | sknabl ed Fal se True if cube nap 3.8.10 texture/ enabl e

texturing i s enabl ed
TEXTURE B NO NG ABE MP_EXT Z+ Getintegerv O Texture obj ect 3.8.8 texture

for TEXTURE G.BE MWP
TEXTURE Q.BE MMP PCH TIVE X EXT nxl GetTexinage see 3.8 positive x face 3.8

cube nap texture

inage at lod i
TEXTURE_ A.BE MAP_NEGATI VE X EXT nxI Gt Texl nage see 3.8 negative x face 3.8

cube nap texture

inage at lod i
TEXTURE ABE MP PFH TIVE Y EXT nxl Gt Texl nage see 3.8 positive y face 3.8

cube nap texture

inage at lod i
TEXTURE O.BE M\P NEGATIVE Y EXT nxl GetTexinage see 3.8 negative y face 3.8

cube nap texture

inage at lod i
TEXTURE ABE MP P TIVE Z EXT nxl GetTexinage see 3.8 positive z face 3.8

cube nap texture

inage at lod i
TEXTURE_ O.BE MAP NEGATI VE Z EXT nxl Gt Texl nage see 3.8 negative z face 3.8

cube nap texture

inage at lod i
(table 6.14, p204) change the entry for TEXTURE GEN MIE to:

Gt Vel ue Type Get Gonmand Initial Value Description Sec Atribute

TEXTURE (BN MITE x5 Get TexGeni v EYE LI NEAR Function used for 210.4 texture
texgen (for s, t,r,

(the type changes from4xZ3 to 4xZ5)

121

EXT_texture_cube_map NVIDIA OpenGL Extension Specifications

New | npl enent ati on Dependent State

(table 6.24, p214) add the followng entry:

Gt Vel ue Type Gt Gmand MninumVal ue Description Sec Atribute
M QBE MP TEXTURE S ZE EXT Z+ Getintegerv 16 Maxi num cube nap 381 -

texture i nage

di nensi on

122

NVIDIA OpenGL Extension Specifications EXT_texture_edge clamp

Nane
EXT _texture_edge cl anp

Name Strings
GL_EXT_texture_edge_cl anp

Ver si on
$Date: 1997/09/22 23:04:01 $ $Revision: 1.1 $

Dependenci es
SA S texture_filterd affects the definition of this extension

Overvi ew
The base OpenG. provides cl anping such that the texture coordi nates are
limted to exactly the range [0,1]. Wen a texture coordinate is
clanped using this algorithm the texture sanpling filter straddles the
edge of the texture inmage, taking 1/2 its sanple values fromw thin the
texture image, and the other 1/2 fromthe texture border. It is
sonetimes desirable to clanp a texture without requiring a border, and
wi t hout using the constant border color
Thi s extension defines a new texture clanmping algorithm
CLAMP_TO EDCE_EXT cl anps texture coordinates at all mipmap |evels such
that the texture filter never sanples a border texel. Wen used with a
NEAREST or a LINEAR filter, the color returned when clanping is derived
only fromtexels at the edge of the texture inmage. Wen used with
FILTER4 filters, the filter operations of CLAMP_TO EDGE EXT are defined
but don't result in a nice clanp-to-edge color.

CLAMP_TO EDGE_EXT is supported by 1, 2, and 3-di mensional textures
only.

| ssues

* Is the arithnmetic for FILTER4 filters correct? |Is this the right
thing to do?

New Procedures and Functions
None

New Tokens
Accepted by the <parane paraneter of TexParaneteri and TexParaneterf,
and by the <parans> paraneter of TexParaneteriv and TexParaneterfv, when
their <pnanme> parameter is TEXTURE_WRAP_S, TEXTURE _WRAP_T, or
TEXTURE_WRAP_R:

CLAMP_TO EDGE_EXT 0x812F
Additions to Chapter 2 of the 1.0 Specification (OpenG. Qperation)

None

123

EXT_texture_edge clamp NVIDIA OpenGL Extension Specifications

Additions to Chapter 3 of the 1.0 Specification (Rasterization)

GL Specification Table 3.7 is updated as follows:

Nane Type Legal Val ues
TEXTURE_WRAP_S i nt eger CLAMP, REPEAT,
CLAMP_TO EDGE_EXT
TEXTURE_WRAP_T i nt eger CLAMP, REPEAT,
CLAMP_TO EDGE_EXT
TEXTURE_WRAP_R i nt eger CLAMP, REPEAT,
CLAMP_TO EDGE_EXT
TEXTURE_M N_FI LTER i nt eger NEAREST, LI NEAR,

NEAREST M PMAP_NEAREST,

NEAREST_M PMAP_LI NEAR,

LI NEAR_ M PMAP_NEAREST,

LI NEAR_M PMAP_LI NEAR,

FILTER4A_SG S,

LI NEAR CLI PMAP_LI NEAR_SG X
TEXTURE_MAG FI LTER i nt eger NEAREST, LI NEAR,

FILTER4_SG S,

LI NEAR DETAIL_SG S,

LI NEAR_DETAI L_ALPHA

LI NEAR _DETAI L_COLOR_

LI NEAR_SHARPEN SG S,

LI NEAR_SHARPEN_ALPHA SG S,

LI NEAR_SHARPEN COLOR SG S

LI NEAR_LEQUAL_R SG S,

LI NEAR_GEQUAL_R SG S

SGA S,
SG S

TEXTURE_BORDER_COLOR 4 floats any 4 values in [0,1]
DETAI L_TEXTURE_LEVEL_SG S i nteger any non-negative integer
DETAI L_TEXTURE_MODE_Sd S i nt eger ADD, MODULATE

TEXTURE_M N_LCD f | oat any val ue
TEXTURE_MAX_LCD fl oat any val ue
TEXTURE_BASE_LEVEL i nteger any non-negative integer
TEXTURE_MAX_LEVEL i nteger any non-negative integer
GENERATE_M PMAP_SG S bool ean TRUE or FALSE
TEXTURE_CLI PMAP_OFFSET_SG X 2 floats any 2 val ues

Table 3.7: Texture paraneters and their val ues.

CLAMP_TO EDCE_EXT texture clanping is specified by calling
TexParaneteri with <target> set to TEXTURE 1D, TEXTURE 2D, or
TEXTURE_3D, <pname> set to TEXTURE_WRAP_S, TEXTURE _WRAP_T,

or TEXTURE_WRAP_R, and <parant set to CLAVMP_TO EDGE_EXT.

Let [min,max] be the range of a clanped texture coordinate, and let N
be the size of the 1D, 2D, or 3D texture inage in the direction of
clanping. Then in all cases

max =1 - mn
because the clanping is always symmetric about the [0, 1] mapped range of
a texture coordinate. Wen used with NEAREST or LINEAR filters,
CLAMP_TO EDGE_EXT defines a m ni mum cl anpi ng val ue of

mn=1/ 2*N

124

NVIDIA OpenGL Extension Specifications EXT_texture_edge clamp

When used with FILTER4 filters, CLAMP_TO EDGE EXT defines a m ni num
cl anmpi ng val ue of

mn =3/ 2*N, N> 2
mn=1/2 N <= 2

Additions to Chapter 4 of the 1.0 Specification (Per-Fragnent Operations
and the Franebuffer)

None

Additions to Chapter 5 of the 1.0 Specification (Special Functions)
None

Additions to Chapter 6 of the 1.0 Specification (State and State Requests)
None

Additions to the GLX Specification
None

Dependencies on SG@ S texture_filter4
If SG S texture_filter4 is not inplenented, then discussions about the
interaction of filter4 texture filters and the clanping function
described in this file are invalid, and should be ignored.

Errors
None

New St at e

Only the type infornation changes for these paraneters:

Get Val ue Get Command Type Initial Value Attrib
TEXTURE_WRAP_S Get TexParaneteriv n x Z3 REPEAT texture
TEXTURE_WRAP_T Get TexPar aneteriv n x Z3 REPEAT texture
TEXTURE_WRAP_R Get TexParaneteriv n x Z3 REPEAT texture

New | npl enent ati on Dependent State

None

125

EXT_texture_env_add NVIDIA OpenGL Extension Specifications

Name

EXT texture_env_add
Nanme Strings

GL_EXT texture_env_add
Cont act

M chael Gold, NVIDI A (gold "at’ nvidia.com
Tom Frisinger, ATI (tfrisinger 'at’ atitech.com

St at us
Shi ppi ng (version 1.6)
Ver si on
$Dat e: 1999/03/22 17:28:00 $ $Revision: 1.1 $
Nunber
185
Dependenci es
None
Overvi ew
New texture envi ronnment function ADD is supported with the follow ng
equat i on:
v =CF +

New function may be specified by calling TexEnv with ADD token.

New Procedures and Functions
None
New Tokens

Accepted by the <parans> paraneter of TexEnvf, TexEnvi, TexEnvfv, and
TexEnvfi when the <pnane> paraneter value is G._TEXTURE ENV_MODE

ADD
Additions to Chapter 2 of the G. Specification (OpenG. Operation)
None

Additions to Chapter 3 of the G Specification (Rasterization)

126

NVIDIA OpenGL Extension Specifications EXT_texture_env_add

Addi ti on
and t he

None

Addi ti on

None

Addi ti on

None

Addi ti on

None

Texture Envi ronment

Base Texture For mat REPLACE MODULATE BLEND DECAL ADD
ALPHA Rv = Rf
G =G
Bv = Bf
Av = Af At
LUM NANCE Rv = Rf +Lt
Qv = G +Lt
Bv = Bf +Lt
Av = Af
LUM NANCE ALPHA Rv = Rf +Lt
Qv = +Lt
Bv = Bf +Lt
Av = Af At
| NTENSI TY Rv = RF+It
Qv = G+t
Bv = Bf +It
Av = Af +lt
RGB Rv = Rf +Rt
G = G+G
Bv = Bf +Bt
Av = Af
RGBA Rv = Rf+Rt
G = G+G
Bv = Bf +Bt
Av = Af At

Tabl e 3.11: Texture functions.

s to Chapter 4 of the G Specification (Per-Fragment Operations

Framebuf f er)

s to Chapter 5 of the G Specification (Special Functions)

s to Chapter 6 of the G Specification (State and State Requests)

s tothe G&AX / WAL / AG Specifications

127

EXT_texture_env_add NVIDIA OpenGL Extension Specifications

GLX Protocol
None
Errors
None
New St at e
None
New | mpl ement ati on Dependent State

None

128

NVIDIA OpenGL Extension Specifications EXT_texture_env_combine

Nanme
EXT_t exture_env_conbi ne
Nanme Strings
GL_EXT texture_env_conbi ne
Ver si on
$Dat e: 1999/ 04/02 13:54:17 $ $Revision: 1.7 $
Nurnber
158
Dependenci es

SA texture_color_table affects the definition of this extension
SA X texture_scal e bias affects the definition of this extension

Overvi ew

New t exture environment function COVBI NE_EXT al |l ows progranmabl e
texture conbi ner operations, including:

REPLACE Ar g0

MODULATE Arg0 * Argl

ADD Arg0 + Argl

ADD_SI GNED_EXT Arg0 + Argl - 0.5

| NTERPOLATE_EXT Arg0o * (Arg2) + Argl * (1-Arg2)

where Arg0, Argl and Arg2 are derived from

PRI MARY_CCOLOR_EXT primary color of incom ng fragnent

TEXTURE texture color of corresponding texture unit
CONSTANT_EXT texture environment constant col or
PREVI QUS_EXT result of previous texture environment; on

texture unit 0, this maps to PRI MARY _COLOR EXT
and Arg2 is restricted to the al pha conponent of the correspondi ng source.
In addition, the result nay be scaled by 1.0, 2.0 or 4.0.
| ssues

Shoul d the explicit bias be renmoved in favor of an inplcit bias as
part of a ADD _SI GNED _EXT function?

- Yes. This pre-scale bias is a special case and will be treated
as such.

Shoul d the primary color of the inconming fragment be available to
all texture environnents? Currently it is only available to the
texture environment of texture unit O.

- Yes, PRI MARY_COLOR_EXT has been added as an input source

129

EXT_texture_env_combine NVIDIA OpenGL Extension Specifications

Shoul d textures fromother texture units be all owed as sources?

- No, not in the base spec. Too many vendors have expressed
concerns about the scalability of such functionality. This can
be added as a subsequent extension

Al'l of the 1.2 nodes except BLEND can be expressed in ternms of
this extension. Should texture color be allowed as a source for
Arg2, so all of the 1.2 nodes can be expressed? |If so, should al
col or sources be allowed, to maintain orthogonality?

- No, not in the base spec. This can be added as a subsequent

ext ensi on.
Procedures and Functions
None
Tokens

Accepted by the <parans> paraneter of TexEnvf, TexEnvi, TexEnvfv,
and TexEnviv when the <pnanme> paraneter value is TEXTURE_ENV_MODE

COMVBI NE_EXT 0x8570

Accepted by the <pnanme> paraneter of TexEnvf, TexEnvi, TexEnvfv,
and TexEnviv when the <target> paraneter value is TEXTURE_ENV

COMBI NE_RGB_EXT 0x8571
COVBI NE_ALPHA_EXT 0x8572
SOURCEO_RGB_EXT 0x8580
SOURCE1_RGB_EXT 0x8581
SOURCE2_RGB_EXT 0x8582
SOURCEO_ALPHA_EXT 0x8588
SOURCE1_ALPHA_EXT 0x8589
SOURCE2_ALPHA_EXT 0Xx858A
OPERANDO_RGB_EXT 0x8590
OPERANDL_RGB_EXT 0x8591
OPERAND2_RGB_EXT 0x8592
OPERANDO_ALPHA EXT 0x8598
OPERAND1_ALPHA_EXT 0x8599
OPERAND2_ALPHA_EXT 0Xx859A
RGB_SCALE_EXT 0x8573
ALPHA SCALE

Accepted by the <parans> paraneter of TexEnvf, TexEnvi, TexEnvfv,
and TexEnviv when the <pname> paraneter value is COVBI NE_RGB_EXT
or COMBI NE_ALPHA_ EXT

REPLACE

MODULATE

ADD

ADD_SI GNED_EXT 0x8574
| NTERPOLATE_EXT 0x8575

Accepted by the <parans> paraneter of TexEnvf, TexEnvi, TexEnvfv,

130

NVIDIA OpenGL Extension Specifications EXT_texture_env_combine

and TexEnviv when the <pnane> paraneter value is SOURCEO RGB EXT,
SOURCE1_RGB _EXT, SOURCE2_RGB EXT, SOURCEO ALPHA EXT,
SOURCE1_ALPHA EXT, or SOURCE2_ALPHA EXT

TEXTURE

CONSTANT_EXT 0x8576
PRI MARY_COLOR_EXT 0x8577
PREVI OUS_EXT 0x8578

Accepted by the <parans> paraneter of TexEnvf, TexEnvi, TexEnvfv,
and TexEnviv when the <pnane> paraneter value is
OPERANDO_RGB_EXT or OPERAND1_RGB_EXT

SRC_COLOR
ONE_M NUS_SRC_COLOR
SRC_ALPHA

ONE_M NUS_SRC_ALPHA

Accepted by the <parans> paraneter of TexEnvf, TexEnvi, TexEnvfv,
and TexEnviv when the <pnane> paraneter value is
OPERANDO_ALPHA EXT or OPERAND1_ALPHA EXT

SRC_ALPHA
ONE_M NUS_SRC_ALPHA

Accepted by the <parans> paraneter of TexEnvf, TexEnvi, TexEnvfv,
and TexEnviv when the <pnanme> paraneter value is
OPERAND2_RGB_EXT or OPERAND2_ALPHA EXT

SRC_ALPHA
Accepted by the <parans> paraneter of TexEnvf, TexEnvi, TexEnvfv,

and TexEnviv when the <pname> paraneter value is RGB_SCALE EXT or
ALPHA_SCALE

PR
coo

Additions to Chapter 2 of the G. Specification (OpenG. QOperation)
None
Additions to Chapter 3 of the G. Specification (Rasterization)

Added to subsection 3.8.9, before the paragraph describing the
state requirenments:

If the value of TEXTURE ENV_MODE is COMBI NE EXT, the form of the
texture function depends on the val ues of COVBI NE_RGB EXT and
COMBI NE_ALPHA EXT, according to table 3.20. The RG and ALPHA
results of the texture function are then nultiplied by the val ues
of RGB_SCALE _EXT and ALPHA SCALE, respectively. The results are
clanped to [0, 1].

131

EXT_texture_env_combine NVIDIA OpenGL Extension Specifications

COVBI NE_RGB_EXT or

COVBI NE_ALPHA EXT Texture Function

REPLACE Ar g0

MODULATE Arg0o * Argl

ADD Arg0 + Argl

ADD_SI GNED_EXT Arg0 + Argl - 0.5

| NTERPOLATE_EXT Arg0 * (Arg2) + Argl * (1-Arg2)

Tabl e 3.20: COMBI NE_EXT texture functions

The argunments ArgO, Argl and Arg2 are deternined by the val ues of
SOURCE<n> RGB_EXT, SOURCE<n>_ ALPHA EXT, OPERAND<n> RGB_EXT and
OPERAND<n>_ ALPHA EXT. In the following two tables, Ct and At are
the filtered texture RG and al pha values; Cc and Ac are the
texture environnent RGB and al pha values; Cf and Af are the RGB
and al pha of the primary color of the inconming fragnment; and Cp
and Ap are the RGB and al pha values resulting fromthe previous
texture environnent. On texture environnent 0, Cp and Ap are
identical to Cf and Af, respectively. The relationship is
described in tables 3.21 and 3. 22.

SOURCE<n> RGB EXT OPERAND<n> RGB_EXT Ar gunent
TEXTURE SRC_COLOR (@
ONE_M NUS_SRC _COLOR (1-¢)
SRC_ALPHA At
ONE_M NUS_SRC_ALPHA (1-At)
CONSTANT_EXT SRC_COLOR Cc
ONE_M NUS_SRC _COLOR (1-Cc)
SRC_ALPHA Ac
ONE_M NUS_SRC_ALPHA (1-Ac)
PRI MARY_COLOR_EXT SRC_COLOR Cr
ONE_M NUS_SRC _COLOR (1-cCx)
SRC_ALPHA Af
ONE_M NUS_SRC_ALPHA (1- Af)
PREVI QUS_EXT SRC_COLOR Cp
ONE_M NUS_SRC _COLCR (1-Cp)
SRC_ALPHA Ap
ONE_M NUS_SRC_ALPHA (1- Ap)

Tabl e 3.21: Argunments for COMBI NE_RGB EXT functions

SOURCE<n> ALPHA EXT OPERAND<n> ALPHA EXT Argument

TEXTURE SRC_ALPHA At
ONE_M NUS_SRC_ALPHA (1- At)
CONSTANT_EXT SRC_ALPHA Ac
ONE_M NUS_SRC_ALPHA (1- Ac)
PRI MARY_COLOR_EXT SRC_ALPHA Af
ONE_M NUS_SRC_ALPHA (1- Af)
PREVI OUS_EXT SRC_ALPHA Ap
ONE_M NUS_SRC_ALPHA (1- Ap)

Tabl e 3.22: Argunents for COMBI NE_ALPHA EXT functions

The mappi ng of texture components to source conponents is

132

NVIDIA OpenGL Extension Specifications EXT_texture_env_combine

summarized in Table 3.23. In the following table, At, Lt, It, R,
G and Bt are the filtered texel val ues.

Base Internal Format RGB Val ues Al pha Val ue
ALPHA 0, 0, 0 At
LUM NANCE Lt, Lt, Lt 1
LUM NANCE_ALPHA Lt, Lt, Lt At
| NTENSI TY lt, 1t, It It
RGB R, G, Bt 1
RGBA R, G, Bt At

Tabl e 3.23: Correspondence of texture components to source
conponents for COVBI NE_RGB EXT and COVBI NE_ALPHA EXT argunents

Additions to Chapter 4 of the G. Specification (Per-Fragnent Operations
and the Franebuffer)

None

Additions to Chapter 5 of the G. Specification (Special Functions)
None

Additions to Chapter 6 of the GL Specification (State and State Requests)
None

Additions to the G.X Specification
None

G.X Protocol
None

Errors
I NVALID ENUM i s generated if <paranms> val ue for COVBI NE_ RGB_EXT or
COVBI NE_ALPHA EXT is not one of REPLACE, MODULATE, ADD,
ADD_SI GNED_EXT, or | NTERPOLATE_EXT.
I NVALID ENUM i s generated if <params> val ue for SOURCEO _RGB EXT,
SOURCE1_RGB_EXT, SOURCE2_RGB _EXT, SOURCEO_ALPHA EXT,
SOURCEL1_ALPHA EXT or SOURCE2_ALPHA EXT is not one of TEXTURE,
CONSTANT_EXT, PRI MARY_COLOR_EXT or PREVI QUS_EXT.
I NVALID ENUM i s generated if <params> val ue for OPERANDO_RGB EXT
or OPERAND1_RGB _EXT is not one of SRC COLOR, ONE_M NUS_SRC COLOR,
SRC_ALPHA or ONE_M NUS_SRC_ALPHA.
I NVALID ENUM i s generated if <params> val ue for OPERANDO_ALPHA EXT
or OPERAND1_ALPHA EXT is not one of SRC ALPHA or
ONE_M NUS_SRC_ALPHA.

I NVALID ENUM i s generated if <params> val ue for OPERAND2_ RGB_EXT
or OPERAND2_ALPHA EXT is not SRC_ALPHA.

133

EXT_texture_env_combine NVIDIA OpenGL Extension Specifications

| N\VALI D VALUE is generated if <params> val ue for RGB_SCALE_EXT or
ALPHA SCALE is not one of 1.0, 2.0, or 4.0.

Dependenci es on SA texture_col or_table
If SGE _texture_color_table is inplenented, the expanded Rt, &,
Bt, and At values are used directly instead of the expansion
descri bed by Tabl e 3.23.

Dependenci es on SA X texture_scal e_bi as
If SE X texture_scale _bias is inplenented, the expanded Rt, &,

Bt, and At values are used directly instead of the expansion
descri bed by Tabl e 3.23.

New St at e
Get Val ue Get Conmand Type Initial Value Attribute
COMBI NE_RGB_EXT Get TexEnvi v n x Z4 MODULATE texture
COMVBI NE_ALPHA EXT Get TexEnvi v n x Z4 MODULATE texture
SOURCEO_RGB_EXT Get TexEnvi v n x Z3 TEXTURE texture
SOURCE1_RGB_EXT Get TexEnvi v n x Z3 PREVI QUS_EXT texture
SOURCE2_RGB_EXT Get TexEnvi v n x Z3 CONSTANT_EXT texture
SOURCEO_ALPHA _EXT Get TexEnvi v n x Z3 TEXTURE texture
SOURCE1_ALPHA EXT Get TexEnvi v n x Z3 PREVI QUS_EXT texture
SOURCE2_ALPHA EXT Get TexEnvi v n x Z3 CONSTANT_EXT texture
OPERANDO_RGB_EXT Get TexEnvi v n x Z6 SRC_COLOR texture
OPERAND1_RGB_EXT Get TexEnvi v n x Z6 SRC_COLOR texture
OPERAND2_RGB_EXT Get TexEnvi v n x Z1 SRC_ALPHA texture
OPERANDO_ALPHA EXT Get TexEnviv n x Z4 SRC_ALPHA texture
OPERAND1_ALPHA EXT Get TexEnviv n x Z4 SRC_ALPHA texture
OPERAND2_ALPHA EXT Get TexEnvi v n x Z1 SRC_ALPHA texture
RGB_SCALE_EXT Get TexEnvfv n x R3 1.0 texture
ALPHA SCALE Get TexEnvfv n x R3 1.0 texture

New | mpl ement ati on Dependent State
None
NVI DI A | npl enentation Details
Because of a hardware limtation, TNT, TNT2, GeForce, and Quadro

treat "scale by 4.0" with the COVBI NE_RGB_EXT or COMBI NE_ALPHA EXT
nmode of ADD_SI GNED EXT as "scale by 2.0".

134

NVIDIA OpenGL Extension Specifications EXT _texture_filter_anisotropic

Narme

EXT texture filter_anisotropic
Nanme Strings

GL_EXT texture filter_anisotropic
Noti ce

Copyri ght NVI DI A Corporation, 1999.
Ver si on

August 24, 1999
Nurnber

187
Dependenci es

Witten based on the wording of the Qpen@ 1.2 specification
Overvi ew

Texture mapping using Open@.’ s existing mipmap texture filtering
nodes assunes that the projection of the pixel filter footprint into
texture space is a square (ie, isotropic). |In practice however, the
footprint may be I ong and narrow (ie, anisotropic). Consequently,

m pmap filtering severely blurs inmges on surfaces angled obliquely
away fromthe viewer.

Several approaches exist for inproving texture sanpling by accounting
for the anisotropic nature of the pixel filter footprint into texture
space. This extension provides a general mechani smfor supporting
ani sotropic texturing filtering schenes w thout specifying a
particular formulation of anisotropic filtering.

The extension pernmits the Open@ application to specify on
a per-texture object basis the nmaxi mum degree of anisotropy to
account for in texture filtering.

I ncreasing a texture object’s maxi num degree of ani sotropy may
improve texture filtering but may al so significantly reduce the

i mpl ementation’s texture filtering rate. |nplenmentations are free
to clamp the specified degree of anisotropy to the inplenentation’s
maxi mum supported degree of ani sotropy.

A texture’s maxi mum degree of anisotropy is specified independent
fromthe texture’s ninification and magnification filter (as
opposed to being supported as an entirely new filtering node).

| mpl ementations are free to use the specified mnification and
magni fication filter to select a particular anisotropic texture
filtering scheme. For exanple, a NEAREST filter with a naxi mum
degree of anisotropy of two could be treated as a 2-tap filter that

135

EXT _texture_filter_anisotropic NVIDIA OpenGL Extension Specifications

accounts for the direction of anisotropy. |Inplenentations are also
permtted to ignore the nminification or magnification filter and
i mpl ement the highest quality of anisotropic filtering possible.

Applications seeking the highest quality anisotropic filtering
avai l abl e are advised to request a LI NEAR_ M PMAP_LI NEAR minification
filter, a LINEAR magnification filter, and a | arge nmaxi mum degree

of ani sotropy.

| ssues

Shoul d there be a particular anisotropic texture filtering mnification
and magni fication node?

RESOLUTI ON: NO. The nmxi num degree of anisotropy should contro
when ani sotropic texturing is used. Mking this orthogonal to
the minification and nagnification filtering nodes allows these
settings to influence the anisotropic schene used. Yes, such
an ani sotropic filtering schenme exists in hardware.

What shoul d the m ni nrum val ue for MAX TEXTURE MAX ANl STROPY_EXT be?

RESOLUTION: 2.0. To support this extension, at least 2 to 1
ani sotropy shoul d be support ed.

Shoul d an i npl enentation-defined limt for the maxi mum maxi mum degree of
ani sotropy be "get-able"?

RESOLUTI ON: YES. But you should not assune that a hi gh maxi mum
maxi mum degree of ani sotropy inplies anything about texture
filtering performance or quality.
Shoul d anyt hing particular be said about anisotropic 3D texture filtering?
Not sure. Does the inplenentation exanple shown in the spec for
2D ani sotropic texture filtering readily extend to 3D ani sotropic
texture filtering?
New Procedures and Functions
None
New Tokens
Accepted by the <pnane> paraneters of Get TexParaneterfyv,
Get TexPar aneteriv, TexParaneterf, TexParanmeterfv, TexParameteri,
and TexParaneteriv:

TEXTURE_MAX_ANI SOTROPY_EXT 0x84FE

Accepted by the <pnane> paraneters of GetBool eanv, Get Doubl ev,
Get Fl oatv, and Cetl ntegerv:

MAX_TEXTURE_MAX_ANI SOTROPY_EXT 0x84FF

136

NVIDIA OpenGL Extension Specifications EXT _texture_filter_anisotropic

Additions to Chapter 2 of the 1.2 Specification (OpenG. Operation)
None
Additions to Chapter 3 of the 1.2 Specification (Rasterization)
-- Sections 3.8.3 "Texture Paraneters"
Add the following entry to the end of Table 3.17:

Nane Type Legal Val ues

TEXTURE_MAX_ANI SOTROPY_EXT fl oat greater or equal to 1.0

-- Sections 3.8.5 "Texture Mnification" and 3.8.6 "Texture Magnification"
After the first paragraph in Section 3.8.5:

"When the texture’'s val ue of TEXTURE MAX ANl SOTROPY_EXT is equal to 1.0,
the GL uses an isotropic texture filtering approach as described in

this section and Section 3.8.6. However, when the texture’s val ue

of TEXTURE_MAX_ ANl SOTROPY_EXT is greater than 1.0, the G.L inplenmentation
should use a texture filtering schene that accounts for a degree

of anisotropy up to the snaller of the value of TEXTURE MAX AN STROPY_EXT
or the inplenentation-defined val ue of MAX TEXTURE MAX ANl STROPY_EXT

The particul ar scheme for anisotropic texture filtering is

i mpl enent ati on dependent. Additionally, inplenmentations are free

to consider the current texture mnification and nmagnification nodes
to control the specifics of the anisotropic filtering schene used.

The ani sotropic texture filtering schene may only access ni pmap
levels if the mnification filter is one that requires m pnmaps.
Additionally, when a minification filter is specified, the

ani sotropic texture filtering scheme may only access texture m pmap
| evel s between the texture’s values for TEXTURE BASE LEVEL and
TEXTURE_MAX LEVEL, inclusive. |Inplenmentations are al so recommended
to respect the values of TEXTURE MAX LOD and TEXTURE M N LOD to
what ever extent the particular anisotropic texture filtering

schene pernmits this."

The foll owi ng descri bes one particul ar approach to inplementing
anisotropic texture filtering for the 2D texturing case:

137

EXT _texture_filter_anisotropic NVIDIA OpenGL Extension Specifications

"Ani sotropic texture filtering substantially changes Section 3.8.5.
Previously a single scale factor P was deternined based on the

pi xel s projection into texture space. Now two scale factors,

Px and Py, are conputed.

Px
Py

Prmax
Pm n

sqrt (dudx”"2 + dvdx”2)
sgrt (dudy”2 + dvdy”2)

max(Px, Py)
m n(Px, Py)

N = min(ceil (Pmax/ Pmi n), naxAni so) ;
Lamda’ = | og2(Prmax/ N)

where nmaxAniso is the smaller of the texture's val ue of
TEXTURE_MAX_ANI SOTROPY_EXT or the inplenentation-defined val ue of
MAX_TEXTURE_MAX_ANI SOTROPY_EXT.

It is acceptable for inplenmentation to round 'N up to the nearest
supported sanpling rate. For exanple an inplenentation may only
support power-of-two sanpling rates.

It is also acceptable for an inplenentation to approxi mate the idea
functions Px and Py with functions Fx and Fy subject to the follow ng
condi ti ons:

1. Fx is continuous and nonotonically increasing in |du/dx| and |dv/dx].
Fy is continuous and nonotonically increasing in |du/dy| and |dv/dy|.

2. max(|du/dx|,|dv/dx|} <= Fx <= |du/dx| + |dv/dx]|.
max (| du/dy|, |dv/dy|} <= Fy <= |du/dy| + |dv/dy]|.

Instead of a single sanple, Tau, at (u,v,Landa), 'N locations in the
m pmap at LOD Landa, are sanpled within the texture footprint of the pixel
Thi s sum TauAni so is defined using the single sanple Tau. Wen the
texture's value of TEXTURE MAX ANl SOTROPHY EXT is greater than 1.0, use
TauAni so instead of Tau to determnmine the fragment’s texture val ue.

i =N

TauAniso = 1/N\ Tau(u(x - 1/2 + i/(N¢1), y), v(x - 1/2 + i/(N+1), y)), Px > Py
/

i=1

i =N
TauAniso = 1I/N\ Tau(u(x, y - /2 + i/(N+1)), v(x, y - 1/2 + i/(N+1))), Py >= Px
/

i=1

138

NVIDIA OpenGL Extension Specifications EXT _texture_filter_anisotropic

It is acceptable to approximate the u and v functions with equally spaced
sanples in texture space at LOD Landa:

i =N

TauAni so = 1/ N\ Tau(u(x,y)+dudx(i/(N#1)-1/2), v(x,y)+dvdx(i/(N+1)-1/2)), Px > Py
/

i=1
i =N

TauAniso = 1/ N\ Tau(u(x,y)+dudy(i/(N+1)-1/2), v(x,y)+dvdy(i/(N+1)-1/2)), Py >= Px
/

i=1

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Frame Buffer)

None

Additions to Chapter 5 of the 1.2 Specification (Special Functions)
None

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)
None

Additions to the GLX Specification
None

Errors
I N\VALI D_VALUE is generated when TexParaneter is called with <pnane>
of TEXTURE_MAX ANl SOTROPY_EXT and a <paran® val ue or val ue of what
<parans> points to less than 1.0.

New St at e

(table 6.13, p203) add the entry:

Get Val ue Type Get Conmand Initial Value Description Sec Atribute

TEXTURE MMX AN SOIRIPY EXT R Get TexParaneterfv 1.0 Mixi numdegree 3.8.5 texture
of ani sotropy

139

EXT _texture_filter_anisotropic

New | npl enentation State
(table 6.25, p215) add the entry:
Type Get CGonmand

GetH oat v

MAX TEXTURE MAX AN SOTRPY EXT R

NVIDIA OpenGL Extension Specifications

M ni num Val ue

140

Atribute

Descri ption
Limt of

naxi num degr ee
of ani sot ropy

NVIDIA OpenGL Extension Specifications EXT_texture lod_bias

Nanme
EXT texture_ | od_bias
Nanme Strings
GL_EXT texture | od bias
Noti ce
Copyright NvIDI A Corporation, 1999, 2000.
Ver si on

NVI DI A Date: May 23, 2000
$Dat e$ $Revi si on$

Nurnber
186

Dependenci es
Witten based on the wording of the Qpen@ 1.2 specification
Affects ARB nultitexture

Overvi ew
Open@. conputes a texture |level -of-detail paranmeter, called | anbda
in the GL specification, that determ nes which m pnap | evels and
their relative nipmap weights for use in m prmapped texture filtering.
Thi s extension provides a neans to bias the | anbda conputation
by a constant (signed) value. This bias can provide a way to blur
or pseudo-sharpen OpenG@.'s standard texture filtering.
This blurring or pseudo-sharpening nmay be useful for special effects
(such as depth-of-field effects) or inmmge processing techni ques
(where the mprmap | evels act as pre-downsanpl ed i mage versions).
On sone inplenmentations, increasing the texture lod bias may inprove
texture filtering performance (at the cost of texture bluriness).
The extension mmcs functionality found in Direct3D

| ssues

Shoul d the texture LOD bias be settable per-texture object or
per-texture stage?

RESOLUTI ON: Per-texture stage. This matches the Direct3D
semantics for texture lod bias. Note that this differs from
the semantics of SA's SA X texture_| od_bi as extension that
has the biases per-texture object.

This also allows the same texture object to be used by two different
texture units for different blurring. This is useful for

141

EXT_texture_lod_bias NVIDIA OpenGL Extension Specifications

extrapol ating detail between various |levels of detail in a
m pmapped texture.

For exanple, you can extrapolate texture detail wth
ARB nultitexture and EXT_texture_env_conbi ne by conputing

(BO - B2) * 2 + B2

where BO is a non-biased texture (normal sharpness) and B2 is
the sane texture but bias by 2 levels-of-detail (fairly blurry).
This has the effect of increasing the high-frequency infornmation
in the texture. There are i mediate Earth Sciences and medi ca

i magi ng applications for this technique.

Per-texture stage control of the LOD bias is also useful for
allowing an application to control overall texture bluriness.
This can be used in ganes to sinulate disorientation (note that
only textures will blur, not edges). It can also be used to
globally control texturing perfornance. An application may be
able to sustain a constant frame rate by avoiding texture fetch
stalls by using slightly blurrier textures.

How does EXT texture |lod bias differ from SGE X texture | od bias?

EXT texture_lod _bias adds a bias to |lanbda. The

SA X texture_| od_bias extension changes the conputation of rho (the
log2 of which is lanbda). The SA X extension provides separate

bi ases in each texture dinension. The EXT extension does not
provide an "directionality" in the LOD control

Does the texture lod bias occur before or after the TEXTURE MAX LCD
and TEXTURE_M N_LOD cl anpi ng?

RESOLUTI ON: BEFORE. This allows the texture lod bias to stil
be clanped within the max/mn | od range.

Does anyt hing special have to be said to keep the biased | anbda val ue
frombeing | ess than zero or greater than the naxi mum nunber of
m pmap | evel s?

RESOLUTION: NO. The existing clanping in the specification
handl es t hese situations.

The texture lod bias is specified to be a float. |In practice, what
sort of range is assuned for the texture | od bias?

RESOLUTI ON: The MAX TEXTURE LOD BI AS EXT i npl enent ati on const ant
advertises the nmaxi mum absol ute val ue of the supported texture

| od bias. The value is recommended to be at |east the maxi mum

m pmap | evel supported by the inplenentation

The texture lod bias is specified to be a float. In practice, what
sort of precision is assuned for the texture | od bias?

RESOLUTI ON; This is inplenentation dependent. Presumably,

hardware woul d i npl ement the texture lod bias as a fractional bias
but the exact fractional precision supported is inplenmentation

142

NVIDIA OpenGL Extension Specifications EXT_texture lod_bias

dependent. At least 4 fractional bits is reconmended.
New Procedures and Functions
None
New Tokens

Accepted by the <target> paraneters of Get TexEnvfv, GetTexEnviv,
TexEnvi, TexEnvf, Texenviv, and TexEnvfv:

TEXTURE_FI LTER_CONTROL_EXT 0x8500
When the <target> paranmeter of GetTexEnvfv, GetTexEnviv, TexEnvi,
TexEnvf, TexEnviv, and TexEnvfv is TEXTURE FI LTER CONTROL_EXT, then
the val ue of <pnane> may be:

TEXTURE_LOD Bl AS_EXT 0x8501

Accepted by the <pname> paraneters of GetBool eanv, Getlntegerv,
Get Fl oatv, and Get Doubl ev:

MAX_TEXTURE_LOD Bl AS_EXT 0x84FD
Additions to Chapter 2 of the 1.2 Specification (QpenG. Operation)
None
Additions to Chapter 3 of the 1.2 Specification (Rasterization)
-- Section 3.8.5 "Texture Mnification"
Change the first fornula under "Scale Factor and Level of Detail" to read:

"The choice is governed by a scale factor p(x,y), the level of detai
paraneter |anbda(x,y), defined as

I anbda’ (x,y) = log2[p(x,y)] + |odBias
where lodBias is the texture unit's (signed) texture |od bias paraneter
(as described in Section 3.8.9) clanped between the positive and negative
val ues of the inplenentation defined constant MAX TEXTURE LOD BI AS EXT."
-- Section 3.8.9 "Texture Environments and Texture Functions"
Change the first paragraph to read:

"The command

voi d TexEnv{if}(enumtarget, enum pnane, T param;
void TexEnv{if}v(enumtarget, enum pnanme, T parans);

sets paranmeters of the texture environnment that specifies how texture
val ues are interepreted when texturing a fragnent or sets per-texture
unit texture filtering paraneters. The possible target paraneters
are TEXTURE ENV or TEXTURE FI LTER CONTROL_EXT. ... Wen target is
TEXTURE_ENV, the possible environment paraneters are TEXTURE_ENV_MCDE

143

EXT_texture_lod_bias NVIDIA OpenGL Extension Specifications

and TEXTURE_ENV_COLOR ... When target is TEXTURE_FI LTER CONTROL_EXT,
the only possible texture filter paraneter is TEXTURE LOD BI AS EXT.
TEXTURE _LOD BI AS EXT is set to a signed floating point val ue that

is used to bias the level of detail paraneter, |anbda, as described
in Section 3.8.5."

Add a final paragraph at the end of the section:

"The state required for the per-texture unit filtering paraneters
consi sts of one floating-point value."

Additions to Chapter 4 of the 1.2 Specification (Per-Fragnment Operations
and the Frane Buffer)

None

Additions to Chapter 5 of the 1.2 Specification (Special Functions)
None

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)
None

Additions to the G.X Specification
None

Errors
| NVALI D ENUM i s generated when TexEnv is called with a <pnane> of
TEXTURE_FI LTER_PARAMETER EXT and t he val ue of <parane or what is pointed
to by <parans> is not TEXTURE_LOD BI AS EXT.

New St at e

(table 6.14, p204) add the entry:
Get Val ue Type Get Command Initial Value Descri ption Sec Attribute

TEXTURE_LOD BI AS_EXT R Get TexEnvfv 0.0 Bi ases texture 3.8.9 texture
| evel of detail

(When ARB nultitexture is supported, the TEXTURE LOD Bl AS EXT state is per-texture unit.)
New | mpl ement ation State

(table 6.24, p214) add the follow ng entries:

Get Val ue Type Get Commrand M ni num Val ue Descri ption Sec Attribute
MAX_TEXTURE_LOD BI AS_EXT R+ Get Fl oat v 4.0 Maxi mum 3.8.9 -

absol ute texture

| od bias

144

NVIDIA OpenGL Extension Specifications EXT_texture_object

Nanme

EXT_t ext ure_obj ect
Nanme Strings

GL_EXT _texture_object
Ver si on

$Dat e: 1995/10/03 05:39:56 $ $Revision: 1.27 $
Nurnber

20
Dependenci es

EXT texture3D affects the definition of this extension
Overvi ew

Thi s extension introduces naned texture objects. The only way to name
atexture in GL 1.0 is by defining it as a single display list. Because
display lists cannot be edited, these objects are static. Yet it is
important to be able to change the i mages and paraneters of a texture.

| ssues

* Shoul d t he di nensions of a texture object be static once they are
changed from zero? This mght sinplify the nmanagenent of texture
menory. \What about other properties of a texture object?

No.
Reasoni ng

* Previ ous proposal s overl oaded the <target> paraneter of nmany Tex
conmmands with texture object names, as well as the origina

enuner at ed values. This proposal elimnated such overl oadi ng,
choosing instead to require an application to bind a texture object,
and then operate on it through the binding reference. If this
constraint ultimately proves to be unacceptable, we can al ways

extend the extension with additional binding points for editing and
querying only, but if we expect to do this, we might choose to hite
the bullet and overload the <target> paranmeters now.

* Conmands to directly set the priority of a texture object and to
query the resident status of a texture object are included. | fee
that binding a texture object would be an unacceptabl e burden for

t hese nanagenent operations. These commands al so all ow queries and
operations on lists of texture objects, which should inprove
efficiency.

* CenText ur esEXT does not return a success/failure bool ean because
it should never fail in practice.

145

EXT_texture_object NVIDIA OpenGL Extension Specifications

New

Addi

Addi

Procedures and Functi ons

voi d GenText ur esEXT(sizei n
uint* textures);

voi d Del et eText ur esEXT(si zei n
const uint* textures);

voi d Bi ndText ur eEXT(enum t ar get
uint texture);

void PrioritizeTexturesEXT(sizei n
const uint* textures,
const clanpf* priorities);
bool ean AreText uresResi dent EXT(si zei n
const uint* textures,
bool ean* residences);
bool ean | sTextureEXT(ui nt texture);
Tokens

Accepted by the <pnane> paraneters of TexParaneteri, TexParaneterf,
TexParameteriv, TexParanmeterfv, GetTexParaneteriv, and Get TexParameterfv:

TEXTURE_PRI ORI TY_EXT 0x8066

Accepted by the <pnane> paraneters of GetTexParaneteriv and
Get TexPar anet er f v:

TEXTURE_RESI DENT_EXT 0x8067

Accepted by the <pnane> paraneters of GetBool eanv, Getlntegerv,
Get Fl oatv, and Get Doubl ev:

TEXTURE_1D_BI NDI NG_EXT 0x8068
TEXTURE_2D_BI NDI NG_EXT 0x8069
TEXTURE_3D_BI NDI NG_EXT 0Xx806A

tions to Chapter 2 of the 1.0 Specification (OpenG. QOperation)
None
tions to Chapter 3 of the 1.0 Specification (Rasterization)

Add the follow ng discussion to section 3.8 (Texturing). In addition
to the default textures TEXTURE 1D, TEXTURE 2D, and TEXTURE 3D EXT, it
is possible to create naned 1, 2, and 3-di nensi onal texture objects.
The nane space for texture objects is the unsigned integers, with zero
reserved by the G.

A texture object is created by binding an unused name to TEXTURE 1D
TEXTURE 2D, or TEXTURE 3D EXT. This binding is acconplished by calling
Bi ndTextureEXT with <target> set to TEXTURE 1D, TEXTURE 2D, or
TEXTURE 3D EXT, and <texture> set to the nane of the new texture object.
When a texture object is bound to a target, the previous binding for

146

NVIDIA OpenGL Extension Specifications EXT_texture_object

that target is automatically broken

When a texture object is first bound it takes the dinmensionality of its
target. Thus, a texture object first bound to TEXTURE 1D is
1-dimensional ; a texture object first bound to TEXTURE 2D i s

2-di nensional, and a texture object first bound to TEXTURE 3D EXT is
3-dinmensional. The state of a 1-dinensional texture object

imedi ately after it is first bound is equivalent to the state of the
default TEXTURE 1D at GL initialization. Likew se, the state of a

2-di nmensi onal or 3-dinensional texture object inmrediately after it is
first bound is equivalent to the state of the default TEXTURE 2D or
TEXTURE 3D EXT at GL initialization. Subsequent bindings of a texture
obj ect have no effect on its state. The error |INVALID OPERATION is
generated if an attenpt is made to bind a texture object to a target of
di fferent dinensionality.

Wiile a texture object is bound, G. operations on the target to which it
i s bound affect the bound texture object, and queries of the target to
which it is bound return state fromthe bound texture object. |If
texture mapping of the dinensionality of the target to which a texture
object is bound is active, the bound texture object is used.

By default when an QpenG. context is created, TEXTURE 1D, TEXTURE_ 2D,
and TEXTURE 3D EXT have 1, 2, and 3-di nensional textures associated
with them |In order that access to these default textures not be
lost, this extension treats them as though their nanes were all zero.
Thus the default 1-dinmensional texture is operated on, queried, and
applied as TEXTURE 1D while zero is bound to TEXTURE_1D. Likew se,
the default 2-dinensional texture is operated on, queried, and applied
as TEXTURE 2D while zero is bound to TEXTURE 2D, and the default

3-di nensional texture is operated on, queried, and applied as
TEXTURE_3D EXT while zero is bound to TEXTURE 3D EXT.

Texture objects are deleted by calling Del eteTexturesEXT with <textures>
pointing to a list of <n> nanes of texture object to be deleted. After
a texture object is deleted, it has no contents or dinensionality, and
its name is freed. |If a texture object that is currently bound is

del eted, the binding reverts to zero. DeleteTexturesEXT ignores nanes
that do not correspond to textures objects, including zero.

GenText ur esEXT returns <n> texture object nanes in <textures> These
names are chosen in an unspecified manner, the only condition being that
only nanes that were not in use imrediately prior to the call to
GenText ur eseEXT are considered. Names returned by GenTexturesEXT are

mar ked as used (so that they are not returned by subsequent calls to
GenText ureseXT), but they are associated with a texture object only
after they are first bound (just as if the name were unused).

An i npl enentation may choose to establish a working set of texture

obj ects on whi ch binding operations are perfornmed wth higher
performance. A texture object that is currently being treated as a
part of the working set is said to be resident. AreTexturesResident EXT
returns TRUE if all of the <n> texture objects named in <textures> are

resident, FALSE otherwise. |If FALSE is returned, the residence of each
texture object is returned in <residences> (Oherwi se the contents of
the <residences> array are not changed. |f any of the nanes in

<textures> is not the name of a texture object, FALSE is returned, the

147

EXT_texture_object NVIDIA OpenGL Extension Specifications

Add
and

Addi

Addi

error I NVALI D VALUE is generated, and the contents of <residences> are
i ndeterm nate. The resident status of a single bound texture object
can al so be queried by calling GetTexParaneteriv or GetTexParaneterfv
with <target> set to the target to which the texture object is bound,
and <pname> set to TEXTURE RESI DENT EXT. This is the only way that the
resident status of a default texture can be queri ed.

Applications guide the QpenG inplenentation in determ ning which
texture objects should be resident by specifying a priority for each
texture object. PrioritizeTexturesEXT sets the priorities of the <n>
texture objects in <textures> to the values in <priorities> Each
priority value is clanped to the range [0.0, 1.0] before it is

assigned. Zero indicates the |lowest priority, and hence the |east

i keli hood of being resident. One indicates the highest priority, and
hence the greatest |ikelihood of being resident. The priority of a
singl e bound texture object can also be changed by calling
TexParaneteri, TexParaneterf, TexParanmeteriv, or TexParaneterfv with
<target> set to the target to which the texture object is bound, <pname>
set to TEXTURE PRI ORI TY_EXT, and <parant or <parans> specifying the new
priority value (which is clanped to [0.0,1.0] before being assigned).
This is the only way that the priority of a default texture can be
specified. (PrioritizeTexturesEXT silently ignores attenpts to
prioritize nontextures, and texture zero.)

tions to Chapter 4 of the 1.0 Specification (Per-Fragnent Operations
the Frane Buffer)

None
tions to Chapter 5 of the 1.0 Specification (Special Functions)

Bi ndText ureEXT and PrioritizeTexturesEXT are included in display lists.
Al'l other commands defined by this extension are not included in display
lists.

tions to Chapter 6 of the 1.0 Specification (State and State Requests)

| sTextureEXT returns TRUE if <texture> is the nane of a valid texture
object. If <texture>is zero, or is a non-zero value that is not the
nane of a texture object, or if an error condition occurs, |sTextureEXT
returns FALSE.

Because the query val ues of TEXTURE 1D, TEXTURE 2D, and TEXTURE_3D EXT
are already defined as bool eans indicating whether these textures are
enabl ed or di sabl ed, another mechanismis required to query the

bi ndi ng associated with each of these texture targets. The nane

of the texture object currently bound to TEXTURE 1D is returned in
<paranms> when Cetlntegerv is called with <pname> set to
TEXTURE 1D BINDI NG EXT. If no texture object is currently bound to
TEXTURE 1D, zero is returned. Likew se, the name of the texture object
bound to TEXTURE 2D or TEXTURE 3D EXT is returned in <parans> when
Getlntegerv is called with <pnane> set to TEXTURE_2D BI NDI NG _EXT or
TEXTURE_3D BINDI NG EXT. If no texture object is currently bound to
TEXTURE 2D or to TEXTURE 3D EXT, zero is returned.

A texture object conprises the image arrays, priority, border color,
filter nodes, and wrap nodes that are associated with that object. More

148

NVIDIA OpenGL Extension Specifications EXT_texture_object

explicitly, the state |ist

TEXTURE,
TEXTURE_PRI ORI TY_EXT
TEXTURE_RED Sl ZE,
TEXTURE_GREEN_SI ZE,
TEXTURE_BLUE_SI ZE,
TEXTURE_ALPHA_SI ZE,
TEXTURE_LUM NANCE_SI ZE,
TEXTURE_| NTENSI TY_SI ZE,
TEXTURE_W DTH,
TEXTURE_HE| GHT,
TEXTURE_DEPTH_EXT,
TEXTURE_BORDER,
TEXTURE_COMPONENTS,
TEXTURE_BORDER_COLOR,
TEXTURE_M N_FI LTER,
TEXTURE_MAG_FI LTER,
TEXTURE_WRAP_S,
TEXTURE_WRAP_T,
TEXTURE_WRAP_R_EXT

conposes a single texture object.

VWhen PushAttrib is called with TEXTURE BI T enabled, the priorities,
border colors, filter nodes, and wap nodes of the currently bound
texture objects are pushed, as well as the current texture bindings and
enabl es. When an attribute set that includes texture information is
popped, the bindings and enables are first restored to their pushed

val ues, then the bound texture objects have their priorities, border
colors, filter npdes, and wrap nodes restored to their pushed val ues.

Additions to the G.X Specification
Texture objects are shared between G.X rendering contexts if and only
if the rendering contexts share display lists. No change is nade to
the GLX API.

GLX Protocol

Si x new G conmands are added.

The following rendering conmand is sent to the server as part of a
gl XRender request:

Bi ndText ur eEXT

2 12 rendering conmand | ength
2 4117 renderi ng comand opcode
4 ENUM tar get

4 CARD32 texture

The foll owing rendering conmand can be sent to the server as part of a
gl XRender request or as part of a gl XRenderLarge request:

149

EXT_texture_object NVIDIA OpenGL Extension Specifications

PrioritizeTexturesEXT

2 8+(n*8) rendering command | ength
2 4118 rendering command opcode
4 | NT32 n

n*4 LI STof CARD32 textures

n*4 LI STof FLOAT32 priorities

If the command is encoded in a gl XRenderLarge request, the
conmand opcode and command | ength fields above are expanded to
4 bytes each:

4 12+(n*8) rendering conmand | ength
4 4118 renderi ng comand opcode

The remai ni ng comuands are non-renderi ng commands. These conmands are
sent separately (i.e., not as part of a gl XRender or gl XRender Lar ge
request), using either the gl XVendorPrivate request or the

gl XVendor Pri vateWt hReply request:

Del et eText ur eseEXT

1 CARD8 opcode (X assi gned)

1 16 GLX opcode (gl XVendor Privat e)
2 4+n request | ength

4 12 vendor specific opcode
4 GLX_CONTEXT_TAG context tag

4 | NT32 n

n*4 CARD32 textures
GenText ur eseXT

1 CARD8 opcode (X assi gned)

1 17 GLX opcode (gl XVendor Pri vat eW t hRepl y)
2 4 request |ength

4 13 vendor specific opcode
4 GLX_CONTEXT_TAG context tag

4 | NT32 n

=>

1 1 reply

1 unused

2 CARD16 sequence numnber

4 n reply length

24 unused

4*n LI STof CARD32 textures

150

NVIDIA OpenGL Extension Specifications

Ar eText ur esResi dent EXT

EXT_texture_object

1 CARDS opcode (X assi gned)
1 17 GLX opcode (gl XVendor Privat eWt hRepl y)
2 4+n request length
4 11 vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 | NT32 n
4* LI STof CARD32 t extures
=>
1 1 reply
1 unused
2 CARD16 sequence numnber
4 (n+p)/4 reply length
4 BOOL32 return_val ue
20 unused
n LI STof BOOL resi dences
p unused, p=pad(n)
| sText ur eEXT
1 CARDS opcode (X assi gned)
1 17 GLX opcode (gl XVendor Pri vat eWt hRepl y)
2 4 request length
4 14 vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 CARD32 textures
=>
1 1 reply
1 unused
2 CARD16 sequence numnber
4 0 reply length
4 BOOL32 return_val ue
20 unused

Dependenci es on EXT texture3D

If EXT_texture3D is not supported,

then all references to 3D textures

in this specification are invalid.

Errors

I N\VALI D VALUE is generated if GenTexturesEXT paraneter <n> is negative.

I N\VALI D VALUE is generated if Del eteTexturesEXT paranmeter <n> is

negati ve.

I NVALID ENUM i s generated if Bi ndTextur eEXT paraneter <target> is not
TEXTURE_1D, TEXTURE_2D, or TEXTURE_3D EXT.

| NVALI D OPERATION is generated if BindTextureEXT paraneter <target> is
TEXTURE 1D, and paraneter <texture> is the name of a 2-di mensional or

3-di nensi ona

texture object.

| NVALI D_OPERATI ON is generated if BindTextureEXT paraneter <target> is
TEXTURE 2D, and paraneter <texture> is the name of a 1-di mensional or
3-di nensi onal texture object.

| NVALI D_OPERATI ON is generated if BindTextureEXT paraneter <target> is

151

EXT_texture_object

NVIDIA OpenGL Extension Specifications

TEXTURE 3D EXT, and paraneter <texture> is the nane of a 1-dinensional

or 2-di nensi onal

texture object.

I NVALI D VALUE is generated if PrioritizeTexturesEXT paraneter <n>

negati ve.

| NVALI D VALUE i s generated if AreTexturesResident EXT paraneter <n>

i s negative.

I N\VALI D VALUE is generated by AreTexturesResidentEXT if any of the

names in <textures> is zero, or

is not the nane of a texture.

| NVALI D_OPERATION i s generated if any of the comrands defined in this

extension is executed between the execution of Begin and the

correspondi ng execution of End.

New St at e

TEXTURE RED S ZE BXT
TEXTURE GREN S ZE EXT
TEXTURE BLLE S ZE BXT
TEXTURE ALPHA S ZE BXT
TEXTURE LM NANE S ZE EXT
TEXTURE | NTENS TY S ZE EXT
TEXTURE WDTH

TEXTURE HA GHT

TEXTURE CEPTH EXT

TEXTURE 408l ZE S3 S
TEXTURE BORER

TEXTURE GOMPONENTS (1D and 2D)
TEXTURE GOMPONENTS (3D and 4D)

TEXTURE BORCER (R
TEXTURE MN A LTER
TEXTURE MG A LTER
TEXTURE VRIP S
TEXTURE VR T
TEXTURE VIRP R EXT
TEXTURE VRP Q S3 S

Get | nt egerv

Get | nt egerv
GetIntegerv

Get TexPar anet er f v

A eText ur esResi dent EXT

Get Tex| nage

Get TexLevel Paranet eri v
Get TexLevel Paranet eri v
Get TexLevel Paraneteri v
Get TexLevel Paraneteri v
Get TexLevel Paraneteri v
Get TexLevel Paraneteri v
Get TexLevel Paraneteri v
Get TexLevel Paraneteri v
Get TexLevel Paranet eri v
Get TexLevel Paranet eri v
Get TexLevel Paraneteri v
Get TexLevel Paraneteri v
Get TexLevel Paraneteri v
Get TexParaneteriv n x C

Get TexParangeteriv n x Z7
Get TexParangeteriv n x Z3
Get TexParaneteriv n x 22
Get TexParaneteriv n x 22
Get TexParangeteriv n x 22
Get TexParangeteriv n x 22

New | mpl ement ati on Dependent State

None

Type

>
x
@

X level s
X levels
X levels
X level s
X level s
X levels
X levels
X level s
X level s
X level s
X levels
X level s
X level s
X levels

DS 33303 0303053 35 3 33535 S

152

X |

X Z+
X Z+
X Z+
X Z+
X Z+
X Z+
X Z+
X Z+
X Z+
X Z+
X Z+
X 242
X Z38

Initial Value Atribute
FALSE texture/ enabl e
FALSE texture/ enabl e
FALSE texture/ enabl e
0 texture

0 texture

0 texture

1 texture
unknown -

nul | -

0 -

0 -

0 -

0 -

0 -

0 -

0 -

0 -

0 -

0 -

0 -

1 -

LUM NANCE -

0 0 0 O texture
NEAREST M PMAP_LI NEAR texture

LI NEAR texture
REPEAT texture
REPEAT texture
REPEAT texture
REPEAT texture

NVIDIA OpenGL Extension Specifications EXT_vertex_array

Name
EXT_vertex_array

Nanme Strings
GL_EXT _vertex_array

Ver si on
$Dat e: 1995/10/03 05:39:58 $ $Revision: 1.16 $ FI NAL

Nurnber
30

Dependenci es
None

Overvi ew
This extension adds the ability to specify nultiple geonetric primtives
with very few subroutine calls. Instead of calling an OpenG. procedure
to pass each individual vertex, nornal, or color, separate arrays
of vertexes, nornmals, and colors are prespecified, and are used to
define a sequence of prinmtives (all of the same type) when a single
call is made to DrawArrayseEXT. A stride mechanismis provided so that
an application can choose to keep all vertex data staggered in a
single array, or sparsely in separate arrays. Single-array storage

may optinm ze performance on sone inplenentations.

Thi s extension also supports the rendering of individual array el enments,
each specified as an index into the enabl ed arrays.

| ssues
* Shoul d arrays for material paranmeters be provided? I|f so, how?

A No. Let’'s leave this to a separate extension, and keep this
extension | ean.

* Shoul d a FORTRAN interface be specified in this docunent?

* It may not be possible to inplement GetPointervEXT in FORTRAN. |If
not, should we elinnate it fromthis proposal ?

A: Leave it in.

* Shoul d a stride be specified by DrawArrayseEXT which, if non-zero,
woul d override the strides specified for the individual arrays?

This might inprove the efficiency of single-array transfers.

A No, it’s not worth the effort and conpl exity.

* Shoul d entry points for byte vertexes, byte indexes, and byte
texture coordi nates be added in this extension?

153

EXT_vertex_array NVIDIA OpenGL Extension Specifications

A: No, do this in a separate extension, which defines byte support
for arrays and for the current procedural interface.
* Shoul d support for meshes (not strips) of rectangl es be provided?
A No. If this is necessary, define a separate quad_nesh extension
that supports both i mredi ate node and arrays. (Add QUAD _MESH EXT
as an token accepted by Begin and DrawArraysEXT. Add
QuadMeshLengt hEXT to specify the I ength of the nesh.)
Reasoni ng

*

Dr awAr r aysEXT requires that VERTEX ARRAY EXT be enabl ed so that

future extensions can support evaluation as well as direct
specification of vertex coordi nates.

*

Thi s extensi on does not support evaluation. |t could be extended

to provide such support by adding arrays of points to be eval uated,
and by adding enables to indicate that the arrays are to be
evaluated. | think we may choose to add an array version of

Eval Mesh, rather than extending the operation of DrawArraysEXT,

so |'d rather wait on this one.

*

<size> is specified before <type> to match the order of the

information in i nmedi ate nbde commands, such as Vertex3f.
(first 3, then f)

*

It seens reasonable to allow attri bute values to be undefined after

Dr awAr r aysEXT executes. This avoids inplenentation overhead in

the case where an inconplete primtive is specified, and will all ow
optim zation on multiprocessor systems. | don’t expect this to be
a burden to progranmmers.

*

It is not an error to call VertexPointer EXT, Nornmal Poi nter EXT

Col or Poi nt er EXT, | ndexPoi nt er EXT, TexCoor dPoi nt er EXT,

or

EdgeFl agPoi nt er EXT between t he execution of Begin and the

correspondi ng execution of End. Because these conmands will
typically be inplenmented on the client side with no protocol
testing for between-Begin-End status requires that the client
track this state, or that a round trip be made. Neither is
desirabl e.

*

Arrays are enabl ed and disabled individually, rather than with a

singl e mask paraneter, for two reasons. First, we have had trouble
all ocating bits in masks, so elimnating a mask elim nates potenti al
trouble down the road. W may eventually require a |arger nunmber of
array types than there are bits in a mask. Second, making the
enables into state elimnates a paraneter in ArrayEl enent EXT, and
may allow it to execute nore efficiently. O course this state
nodel nmay result in progranming errors, but OpenGL is full of such
hazards anyway!

*

ArrayEl ement EXT is provided to support applications that construct

primtives by indexing vertex data, rather than by streaning through
arrays of data in first-to-last order. Because each call specifies
only a single vertex, it is possible for an application to explicitly

154

NVIDIA OpenGL Extension Specifications EXT_vertex_array

specify per-prinmtive attributes, such as a single normal per
i ndi vidual triangle.

* The <count> paraneters are added to the *Poi nter EXT commands to
all ow i npl ementations to cache array data, and in particular to

cache the transfornmed results of array data that are rendered
repeatedly by ArrayEl ement EXT. |nplementations that do not w sh

to perform such caching can ignore the <count> paraneter.

* The <first> paraneter of DrawArraysEXT all ows a single set of
arrays to be used repeatedly, possibly inproving perfornance.

New Procedures and Functions
void ArrayEl ement EXT(int i);

voi d DrawArraysEXT(enum node,
int first,
si zei count);

voi d VertexPoi nter EXT(int size,
enum type,
sizei stride,
sizei count,
const void* pointer);

voi d Nor mal Poi nt er EXT(enum t ype,
sizei stride,
si zei count,
const void* pointer);

voi d Col or Poi nt er EXT(i nt si ze,
enum type,
sizei stride,
si zei count,
const voi d* pointer);

voi d | ndexPoi nt er EXT(enum t ype,
sizei stride,
si zei count,
const void* pointer);

voi d TexCoor dPoi nter EXT(i nt size,
enum type
sizei stride,
si zei count,
const voi d* pointer);

voi d EdgeFl agPoi nt er EXT(si zei stride,
si zei count,
const Bool ean* pointer);

voi d Get Poi nt er vEXT(enum pnane,
voi d** parans);

155

EXT_vertex_array NVIDIA OpenGL Extension Specifications

New Tokens

Accepted by the <cap> paraneter of Enable, D sable, and |IsEnabled, and
by the <pname> paraneter of GetBool eanv, GCetlntegerv, GetFloatv, and

Cet Doubl ev:

VERTEX_ARRAY_EXT 0x8074
NORMAL _ARRAY_EXT 0x8075
COLOR_ARRAY_ EXT 0x8076
| NDEX_ARRAY_EXT 0x8077
TEXTURE_COORD ARRAY_EXT 0x8078
EDGE_FLAG ARRAY_EXT 0x8079

Accepted by the <type> paraneter of VertexPointer EXT, Nornal Poi nter EXT,
Col or Poi nt er EXT, | ndexPoi nt er EXT, and TexCoor dPoi nt er EXT:

DOUBLE_EXT 0x140A

Accepted by the <pnane> paraneter of GetBool eanv, Getlntegerv,
Get Fl oatv, and Get Doubl ev:

VERTEX_ARRAY_S| ZE_EXT 0x807A
VERTEX_ARRAY TYPE_EXT 0x807B
VERTEX_ARRAY_STRI DE_EXT 0x807C
VERTEX_ARRAY_COUNT_EXT 0x807D
NORMAL_ARRAY_TYPE_EXT 0x807E
NORMAL_ARRAY_STRI DE_EXT 0x807F
NORMAL_ARRAY_COUNT_EXT 0x8080
COLOR_ARRAY_S| ZE_EXT 0x8081
COLOR_ARRAY_TYPE_EXT 0x8082
COLOR_ARRAY_STRI DE_EXT 0x8083
COLOR_ARRAY_COUNT_EXT 0x8084
| NDEX_ARRAY_TYPE_EXT 0x8085
| NDEX_ARRAY_STRI DE_EXT 0x8086
| NDEX_ARRAY_COUNT_EXT 0x8087

TEXTURE_COORD ARRAY_S| ZE_EXT 0x8088
TEXTURE_COORD _ARRAY TYPE EXT 0x8089
TEXTURE_COORD_ARRAY_STRI DE_EXT 0x808A
TEXTURE_COORD_ARRAY_COUNT_EXT 0x808B
EDGE_FLAG ARRAY_STRI DE_EXT 0x808C
EDGE_FLAG_ARRAY_COUNT_EXT 0x808D

Accept ed by the <pnanme> paraneter of GetPointervEXT:

VERTEX_ARRAY_ POl NTER_EXT 0x808E
NORMAL_ARRAY_POl NTER_EXT 0x808F
COLOR_ARRAY_POI NTER_EXT 0x8090
| NDEX_ARRAY_POl NTER_EXT 0x8091

TEXTURE_COORD_ARRAY_POl NTER_EXT 0x8092
EDGE_FLAG ARRAY POl NTER EXT 0x8093

Additions to Chapter 2 of the 1.0 Specification (QpenG Operation)

Array Specification

I ndi vi dual array pointers and associ ated data are nmaintained for an

156

NVIDIA OpenGL Extension Specifications EXT_vertex_array

array of vertexes, an array of normals, an array of colors, an array

of color indexes, an array of texture coordinates, and an array of edge
flags. The data associated with each array specify the data type of

the values in the array, the nunber of values per elenent in the array
(e.g. vertexes of 2, 3, or 4 coordinates), the byte stride from one
array elenent to the next, and the nunber of elenents (counting from
the first) that are static. Static elenments may be nodified by the
application, but once they are nodified, the application nmust explicitly
respecify the array before using it for any rendering. Wen an array is
specified, the pointer and associ ated data are saved as client-side
state, and static elenents may be cached by the inplenmentation. Non-
static (dynanmic) elenments are never accessed until ArrayEl enent EXT or

Dr awAr r aysEXT i s issued.

Ver t exPoi nt er EXT specifies the location and data format of an array

of vertex coordinates. <pointer> specifies a pointer to the first
coordinate of the first vertex in the array. <type> specifies the data
type of each coordinate in the array, and nust be one of SHORT, |INT
FLOAT, or DOUBLE EXT, inplying G. data types short, int, float, and
doubl e respectively. <size> specifies the nunber of coordi nates per
vertex, and nust be 2, 3, or 4. <stride> specifies the byte offset

bet ween pointers to consecutive vertexes. |f <stride> is zero, the
vertex data are understood to be tightly packed in the array. <count>
speci fies the nunber of vertexes, counting fromthe first, that are
static.

Nor mal Poi nt er EXT specifies the |location and data format of an array
of normals. <pointer> specifies a pointer to the first coordinate

of the first normal in the array. <type> specifies the data type

of each coordinate in the array, and nust be one of BYTE, SHORT, |INT
FLOAT, or DOUBLE EXT, inplying GL data types byte, short, int, float,

and doubl e respectively. It is understood that each nornmal conprises
three coordinates. <stride> specifies the byte offset between
poi nters to consecutive normals. |If <stride> is zero, the norma

data are understood to be tightly packed in the array. <count>
specifies the nunber of normals, counting fromthe first, that are
static.

Col or Poi nt er EXT specifies the location and data format of an array

of col or conponents. <pointer> specifies a pointer to the first
conponent of the first color elenent in the array. <type> specifies the
data type of each conponent in the array, and nust be one of BYTE,

UNSI GNED _BYTE, SHORT, UNSI GNED _SHORT, | NT, UNSI GNED | NT, FLQAT, or
DOUBLE _EXT, inplying G. data types byte, ubyte, short, ushort, int,
uint, float, and double respectively. <size> specifies the nunber of
conponents per color, and nust be 3 or 4. <stride> specifies the byte
of f set between pointers to consecutive colors. |If <stride> is zero,
the col or data are understood to be tightly packed in the array.
<count > specifies the nunber of colors, counting fromthe first, that
are static.

| ndexPoi nter EXT specifies the location and data format of an array

of color indexes. <pointer> specifies a pointer to the first index in
the array. <type> specifies the data type of each index in the

array, and nust be one of SHORT, |INT, FLOAT, or DOUBLE EXT, inplying
G data types short, int, float, and double respectively. <stride>
specifies the byte offset between pointers to consecutive indexes. |If

157

EXT_vertex_array

<stride> is zero
in the array.

the first, that are static.

NVIDIA OpenGL Extension Specifications

the index data are understood to be tightly packed
<count > specifies the nunber of

i ndexes, counting from

TexCoor dPoi nt er EXT specifies the location and data fornmat of an array

of texture coordi nates.

FLOAT, or DOUBLE_EXT,
doubl e respectively.
el enent, and nust be 1, 2, 3,

zero,
array.
counting fromthe first,

i mplying GL data types short,
<si ze> specifies the nunber of coordinates per
or
bet ween pointers to consecutive elenents of coordinates.

<pointer> specifies a pointer to the first
coordinate of the first el ement
type of each coordinate in the array,

in the array.
and nust

<type> specifies the data
be one of SHORT, | NT,
int, float, and

4, <stride> specifies the byte offset
If <stride>is

the coordinate data are understood to be tightly packed in the
<count > specifies the nunber of texture coordi nate el enents,
that are static.

EdgeFl agPoi nt er EXT specifies the location and data format of an array

of bool ean edge fl ags.
in the array.
consecutive edge fl ags.

nunber of edge fl ags,

<poi nter> specifies a pointer to the first flag
<stride> specifies the byte offset
If <stride> is zero
understood to be tightly packed in the array.
counting fromthe first,

bet ween pointers to

the edge flag data are
<count > specifies the
that are static.

The tabl e bel ow sunmari zes the sizes and data types accepted (or
understood inplicitly) by each of the six pointer-specification conmands.

Conmand Si zes
Ver t exPoi nt er EXT 2,3, 4
Nor mal Poi nt er EXT 3

Col or Poi nt er EXT 3,4

| ndexPoi nt er EXT 1
TexCoor dPoi nt er EXT 1,2,3,4

EdgeFl agPoi nt er EXT 1

Rendering the Arrays

By default all
An i ndi vi dua
t abl e bel ow

Array Specification Comrand
Ver t exPoi nt er EXT

Nor mal Poi nt er EXT

Col or Poi nt er EXT

| ndexPoi nt er EXT
TexCoor dPoi nt er EXT
EdgeFl agPoi nt er EXT

When ArrayEl enent EXT is call ed,
and attribute data taken fromlocation <i> of the enabled arrays.

the arrays are di sabled, neaning that they wll
be accessed when either ArrayEl enent EXT or

Types

short, int, float, double

byte, short, int, float, double
byte, short, int, float, double,
ubyte, ushort, uint

short, int, float, double

short, int, float, double

bool ean

not
DrawArraysEXT is call ed.

array is enabled or disabled by calling Enable or
Di sable with <cap> set to appropriate val ue,

as specified in the

Enabl e Token
VERTEX_ARRAY_ EXT
NORMAL _ARRAY_EXT
COLOR_ARRAY_EXT
| NDEX_ARRAY_EXT
TEXTURE_COORD_ARRAY_EXT
EDGE_FLAG ARRAY_EXT

a single vertex is drawn, using vertex
The

semantics of ArrayEl ement EXT are defined in the C-code bel ow

158

NVIDIA OpenGL Extension Specifications EXT_vertex_array

void ArrayEl enent EXT (int i) {

byt e* p;
i f (NORMAL_ARRAY_EXT) {
if (normal _stride == 0)
p = (byte*)nornmal _pointer + i * 3 * sizeof(nornal _type);
el se

p = (byte*)normal _pointer + i * normal _stride;
Nor mal 3<nor mal _type>v ((normal _type*)p);
}
i f (COLOR_ARRAY_EXT) {
if (color_stride == 0)
p = (byte*)col or_pointer +
i * color_size * sizeof(color_type);
el se
p = (byte*)color_pointer + i * color_stride;
Col or <col or _si ze><col or _type>v ((col or_type*)p);
}
i f (1 NDEX_ARRAY_EXT) {
if (index_stride == 0)
p = (byte*)index_pointer + i * sizeof (index_type);
el se
p = (byte*)index_pointer + i * index_stride;
| ndex<i ndex_type>v ((index_type*)p);

i f (TEXTURE_COORD_ARRAY_EXT) {
if (texcoord_stride == 0)
p = (byte*)texcoord_pointer +
i * texcoord_size * sizeof (texcoord type);
el se
p = (byte*)texcoord pointer + i * texcoord_stride;
TexCoor d<t excoord_si ze><t excoord_type>v ((texcoord_type*)p);
}
i f (EDCGE_FLAG_ARRAY_EXT) {
if (edgeflag_stride == 0)
p = (byte*)edgeflag_pointer + i * sizeof(bool ean);
el se
p = (byte*)edgeflag pointer + i * edgeflag_stride;
EdgeFl agv ((bool ean*)p);

}
i f (VERTEX_ARRAY_EXT) {
if (vertex_stride == 0)
p = (byte*)vertex_pointer +
i * vertex_size * sizeof (vertex_type);
el se
p = (byte*)vertex_pointer + i * vertex_stride;
Vertex<vertex_size><vertex_type>v ((vertex_type*)p);
}
}

ArrayEl ement EXT executes even if VERTEX ARRAY EXT is not enabled. No
drawi ng occurs in this case, but the attributes corresponding to
enabl ed arrays are nodifi ed.

When DrawArrayseEXT is called, <count> sequential elenments from each

enabl ed array are used to construct a sequence of geonetric primtives,
beginning with el enent <first> <npbde> specifies what kind of

159

EXT_vertex_array NVIDIA OpenGL Extension Specifications

Addi

Add
and

Addi

primtives are constructed, and how the array el enents are used to
construct these prinmitives. Accepted values for <node> are PO NTS
LINE STRIP, LINE LOOP, LINES, TRI ANGLE STRI P, TRI ANGLE FAN, TRI ANGLES,
QUAD_STRI P, QUADS, and POLYGON. |f VERTEX_ARRAY_EXT is not enabl ed, no
geonetric primtives are generated.

The semantics of DrawArraysEXT are defined in the C code bel ow
voi d DrawArraysEXT(enum node, int first, sizei count) {
int i;
if (count < 0)
/* generate | NVALID VALUE error and abort */

el se {
Begi n (node);
for (i=0; i < count; i++)
ArrayEl ement EXT(first + i);
End ();
}

}

The ways in which the execution of DrawArrayseXT differs fromthe
semantics indicated in the pseudo-code above are:

1. Vertex attributes that are nodified by DrawArraysEXT have an
unspeci fied value after DrawArraysEXT returns. For exanple, if
COLOR _ARRAY_EXT is enabled, the value of the current color is
undefined after DrawArraysEXT executes. Attributes that aren’t
nmodi fied remain well defined.

2. Operation of DrawArraysEXT is atomc with respect to error
generation. If an error is generated, no other operations take
pl ace.

Al though it is not an error to respecify an array between the execution
of Begin and the correspondi ng executi on of End, the result of such
respecification is undefined. Static array data may be read and cached
by the inplenmentation at any tine. |If static array data are nodified by
the application, the results of any subsequently issued ArrayEl ement EXT
or DrawArraysEXT commands are undefi ned.

tions to Chapter 3 of the 1.0 Specification (Rasterization)
None

tions to Chapter 4 of the 1.0 Specification (Per-Fragnent Operations
the Frane buffer)

None
tions to Chapter 5 of the 1.0 Specification (Special Functions)

ArrayEl ement EXT and DrawArraysEXT are included in display |ists.
When either conmand is entered into a display list, the necessary
array data (determ ned by the array pointers and enables) is al so
entered into the display list. Because the array pointers and
enabl es are client side state, their values affect display lists
when the lists are created, not when the lists are executed.

160

NVIDIA OpenGL Extension Specifications EXT_vertex_array

Array specification commands VertexPoi nter EXT, Normal Poi nt er EXT,
Col or Poi nt er EXT, | ndexPoi nt er EXT, TexCoor dPoi nt er EXT, and

EdgeFl agPoi nt er EXT specify client side state, and are therefore
not included in display lists. Likew se Enable and Di sabl e, when
called with <cap> set to VERTEX ARRAY_EXT, NORVAL_ ARRAY_ EXT,
COLOR_ARRAY_EXT, | NDEX_ARRAY_EXT, TEXTURE_COORD ARRAY EXT, or
EDGE_FLAG ARRAY_EXT, are not included in display lists.

Get Poi ntervEXT returns state information, and so i s not included
in display lists.

Additions to Chapter 6 of the 1.0 Specification (State and State Requests)

Get Poi ntervEXT returns in <parank the array pointer val ue specified
by <pnanme>. Accepted values for <pnane> are VERTEX ARRAY_ PO NTER EXT,
NORMAL_ARRAY_PO NTER_EXT, COLOR_ARRAY_PO NTER_EXT,

| NDEX_ARRAY_ POl NTER_EXT, TEXTURE_COORD_ARRAY_ PO NTER_EXT,

and EDGE_FLAG ARRAY PO NTER EXT.

Al array data are client side state, and are not saved or restored
by PushAttrib and PopAttrib.

Additions to the G.X Specification
None
G.X Protocol

A new rendering command is added; it can be sent to the server as part of a
gl XRender request or as part of a gl XRenderLarge request:

The DrawArraysEXT command consists of three sections, in the follow ng order:
(1) header information, (2) a list of array information, containing the type
and size of the array values for each enabled array and (3) a list of vertex
data. Each element in the list of vertex data contains information for a single
vertex taken fromthe enabl ed arrays.

Dr awAr r aysEXT

2 16+(12*n) +(s*n) rendering command | ength

2 4116 renderi ng command opcode

4 CARD32 n (nunber of array el enments)
4 CARD32 m (nunber of enabl ed arrays)
4 ENUM node [* GL_PO NTS etc */
12*m LI STof ARRAY_I NFO

s*n LI STof VERTEX_DATA

Were s = ns +c¢cs +is +ts +es +vs +np+cp+ip+tp+ ep+ vp. (See
description bel ow, under VERTEX DATA.) Note that if an array is disabled
then no information is sent for it. For exanple, when the normal array is
di sabled, there is no ARRAY_INFO record for the normal array and ns and np
are both zero.

Note that the list of ARRAY_INFO is unordered: since the ARRAY_INFO
record contains the array type, the arrays in the list may be stored
in any order. Also, the VERTEX DATA list is a packed |ist of vertices.
For each vertex, data is retrieved fromthe enabled arrays, and stored
inthe list.

If the command is encoded in a gl XRender Large request, the command
opcode and conmand | ength fields above are expanded to 4 bytes each:

161

EXT_vertex_array NVIDIA OpenGL Extension Specifications

4 20+(12*m) +(s*n) rendering conmand | ength
4 4116 renderi ng comand opcode
ARRAY_I NFO

4 ENUM data type

0x1400 i=1 BYTE

0x1401 i=1 UNSI GNED_BYTE

0x1402 =2 SHORT

0x1403 i= UNSI GNED_SHORT

0x1404 =4 I NT

0x1405 i=4 UNSI GNED_I NT

0x1406 i= FLOAT

0x140A =8 DOUBLE_EXT
4 I NT32 j (nunber of values in array el enent)
4 ENUM array type

0x8074 j=2/3/4 VERTEX_ARRAY_EXT

0x8075 j=3 NORVAL_ARRAY_EXT

0x8076 j=3/4 COLOR_ARRAY_EXT

0x8077 j=1 | NDEX_ARRAY_EXT

0x8078 j=1/2/3/4 TEXTURE_COORD ARRAY_EXT

0x8079 =1 EDGE_FLAG_ARRAY_EXT

For each array, the size of an array elenent is i*j. Some arrays
(e.g., the texture coordinate array) support different data sizes
for these arrays, the size, j, is specified when the array is defined

VERTEX_DATA
if the nornmal array is enabled
ns LI STof BYTE normal array el enent
np unused, np=pad(ns)

if the color array is enabl ed:

cs LI STof BYTE color array el ement
cp unused, cp=pad(cs)

if the index array is enabled

is LI STof BYTE i ndex array el ement
ip unused, ip=pad(is)

if the texture coord array is enabled

ts LI STof BYTE texture coord array el ement
tp unused, tp=pad(ts)

if the edge flag array is enabled

es LI STof BYTE edge flag array el enent
ep unused, ep=pad(es)

if the vertex array is enabl ed:

Vs LI STof BYTE vertex array el enent
vp unused, vp=pad(vs)

where ns, cs, is, ts, es, vs is the size of the nornal, color, index
texture, edge and vertex array elements and np, cp, ip, tp, ep, vpis
the padding for the normal, color, index, texture, edge and vertex array
el enents, respectively.

162

NVIDIA OpenGL Extension Specifications EXT_vertex_array

Errors

I NVALI D OPERATION is generated if DrawArraysiEXT is called between the
execution of Begin and the correspondi ng execution of End.

I NVALID ENUM i s generated if DrawArrayseEXT paraneter <node> is not
PO NTS, LINE STRIP, LINE LOOP, LINES, TRIANGLE STRI P, TRI ANGLE FAN,
TRI ANGLES, QUAD STRI P, QUADS, or POLYGON.

I N\VALI D VALUE is generated if DrawArraysEXT paraneter <count> is
negati ve.

I N\VALI D VALUE is generated if VertexPointer EXT paraneter <size> is not
2, 3, or 4.

I NVALID ENUM i s generated if VertexPoi nter EXT paraneter <type> is not
SHORT, | NT, FLOAT, or DOUBLE_ EXT

I N\VALI D VALUE is generated if VertexPointer EXT paraneter <stride> or
<count> i s negative.

I NVALID ENUM i s generated if Nornal Poi nter EXT paraneter <type> is not
BYTE, SHORT, |NT, FLOAT, or DOUBLE_EXT

| N\VALI D VALUE is generated if Normal Poi nter EXT paraneter <stride> or
<count> i s negative.

I N\VALI D VALUE is generated if Col orPoi nter EXT paraneter <size> is not
3 or 4.

I NVALID ENUM i s generated i f Col or Poi nt er EXT paraneter <type> is not
BYTE, UNSI GNED BYTE, SHORT, UNSI GNED SHORT, | NT, UNSI GNED | NT, FLQOAT,
or DOUBLE_EXT.

| N\VALI D VALUE is generated if Col or Poi nter EXT paraneter <stride> or
<count> i s negative.

I NVALID ENUM i s generated if |ndexPointer EXT paranmeter <type> is not
SHORT, | NT, FLOAT, or DOUBLE_EXT

I N\VALI D VALUE is generated if |ndexPointer EXT paraneter <stride> or
<count> i s negati ve.

| N\VALI D VALUE is generated if TexCoordPoi nter EXT paraneter <size> is not
1, 2, 3, or 4.

I N\VALID ENUM i s generated if TexCoordPoi nter EXT paraneter <type> is not
SHORT, | NT, FLQOAT, or DOUBLE_EXT

I N\VALI D VALUE is generated if TexCoordPoi nter EXT paraneter <stride> or
<count> i s negative.

| N\VALI D_VALUE is generated if EdgeFl agPoi nt er EXT paraneter <stride> or
<count> i s negative.

I NVALID ENUM i s generated i f GetPoi ntervEXT paraneter <pnane> i s not
VERTEX_ARRAY_PO NTER_EXT, NORVAL_ARRAY PO NTER_EXT,

163

EXT_vertex_array NVIDIA OpenGL Extension Specifications

COLOR_ARRAY_POI NTER_EXT, | NDEX_ARRAY_POI NTER_EXT,
TEXTURE_COORD ARRAY POl NTER_EXT, or EDGE_FLAG ARRAY_ POl NTER_EXT.

New St at e
Initial
Get Val ue Get Conmand Type Val ue Attrib
VERTEX_ARRAY_EXT | sEnabl ed B Fal se client
VERTEX_ARRAY_SI ZE_EXT Get | nt egerv Z+ 4 client
VERTEX_ARRAY_TYPE_EXT Get I ntegerv Z4 FLOAT client
VERTEX_ARRAY_STRI DE_EXT Get | ntegerv Z+ 0 client
VERTEX_ARRAY_COUNT_EXT Get I ntegerv Z+ 0 client
VERTEX_ARRAY_PO NTER_EXT Get Poi nt er VEXT Z+ 0 client
NORVMAL_ARRAY_EXT | sEnabl ed B Fal se client
NORVMAL_ARRAY_TYPE_EXT Get | nt egerv Z5 FLOAT client
NORVAL_ARRAY_STRI DE_EXT Get I ntegerv Z+ 0 client
NORVMAL_ ARRAY_COUNT_EXT Get | nt egerv Z+ 0 client
NORMAL_ARRAY_PO NTER_EXT Get Poi nt er vEXT Z+ 0 client
COLOR_ARRAY_EXT | sEnabl ed B Fal se client
CCOLOR_ARRAY_SI ZE_EXT Get | nt egerv Z+ 4 client
COLOR_ARRAY_TYPE_EXT Get I ntegerv Z8 FLOAT client
COLOR_ARRAY_STRI DE_EXT Get | nt egerv Z+ 0 client
COLOR_ARRAY_COUNT_EXT Get I ntegerv Z+ 0 client
COLOR_ARRAY_PO NTER_EXT Get Poi nt er vEXT Z+ 0 client
| NDEX_ARRAY_EXT | sEnabl ed B Fal se client
I NDEX_ARRAY_TYPE_EXT Get | nt egerv Z4 FLOAT client
| NDEX_ARRAY_STRI DE_EXT Get I ntegerv Z+ 0 client
I NDEX_ARRAY_COUNT_EXT Get | ntegerv Z+ 0 client
| NDEX_ARRAY_PO NTER_EXT Get Poi nt er vEXT Z+ 0 client
TEXTURE_COORD_ARRAY_EXT | sEnabl ed B Fal se client
TEXTURE_COORD_ARRAY_SI ZE_EXT Get I ntegerv Z+ 4 client
TEXTURE_COORD_ARRAY_TYPE_EXT Get | nt egerv z4 FLOAT client
TEXTURE_COORD_ARRAY_STRI DE_EXT Get I ntegerv Z+ 0 client
TEXTURE_COORD_ARRAY_COUNT_EXT Get | nt egerv Z+ 0 client
TEXTURE_COORD_ARRAY_PO NTER_EXT Get Poi nt er vEXT Z+ 0 client
EDGE_FLAG_ARRAY_EXT | sEnabl ed B Fal se client
EDCGE_FLAG _ARRAY_STRI DE_EXT Get I ntegerv Z+ 0 client
EDCGE_FLAG_ARRAY_COUNT_EXT Get | nt egerv Z+ 0 client
EDGE_FLAG _ARRAY_PO NTER_EXT Get Poi nt er vEXT Z+ 0 client

New | mpl ement ati on Dependent State

None

164

NVIDIA OpenGL Extension Specifications EXT_vertex_weighting

Nanme

EXT_vertex_wei ghting
Nanme Strings

GL_EXT_vertex_wei ghting
Noti ce

Copyright NvIDI A Corporation, 1999, 2000.
St at us

Shi ppi ng (version 1.0)
Ver si on

NVI DI A Date: May 25, 2000
Nunber

188
Dependenci es

None

Witten based on the wording of the QpenG 1.2 specification but not
dependent on it.

Overvi ew

The intent of this extension is to provide a nmeans for bl ending
geonetry based on two slightly differing nodel view matri ces.

The blending is based on a vertex weighting that can change on a
per-vertex basis. This provides a primtive formof skinning.

A second nodel view matrix transformis introduced. Wen vertex

wei ghting is enabl ed, the incom ng vertex object coordinates are
transformed by both the prinmary and secondary nodel view natri ces;

i kewi se, the incomi ng normal coordinates are transformed by the

i nverses of both the prinmary and secondary nodel view matri ces.

The resulting two position coordi nates and two normal coordinates
are bl ended based on the per-vertex vertex wei ght and then conbi ned
by addition. The transforned, weighted, and conbi ned vertex position
and nornal are then used by OpenG. as the eye-space position and
normal for lighting, texture coordinate, generation, clipping,

and further vertex transfornmation.

| ssues

Shoul d the extension be witten to extend to nbore than two vertex
wei ghts and nodel view matrices?

RESOLUTI ON: NO. Supports only one vertex wei ght and two nodel vi ew
matrices. |If nore than two is useful, that can be handled with

165

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

anot her extension.
Shoul d the wei ghting factor be G.cl anpf instead of G.float?

RESOLUTI ON: G.float. Though the value of a weighting factors
outside the range of zero to one (and even wei ghts that do not add
to one) is dubious, there is no reason to linmit the inplenmentation
to val ues between zero and one.

Shoul d the wei ghts and nodel view matrices be labeled 1 & 2 or 0 & 17

RESCLUTION: 0 & 1. This is consistent with the way lights and
texture units are named in OpenG.. Make G._MODELVI EWD_EXT

be an alias for G.L_MODELVIEW Note that the G.L_MODELVI EW0_EXT+1
will not be GL_MODELVIEWL_EXT as is the case with G._LI GHTO and
GL_LI GHT1.

Shoul d there be a way to sinultaneously Rotate, Translate, Scale,
LoadMatrix, MiultMatrix, etc. the two nodel view nmatrices together?

RESOLUTI ON: NO. The application nust use MatrixMde and repeat ed
calls to keep the matrices in sync if desired.

Shoul d the secondary nodel view natri x stack be as deep as the primary
matrix stack or can they be different sizes?

RESOLUTI ON: Must be the SAME size. This wastes a |ot of nenory
that will be probably never be used (the nodel view matrix stack
nust have at |east 32 entries), but nenory is cheap.

The val ue returned by MAX MODELVI EW STACK DEPTH applies to both
nodel vi ew matri ces.

Shoul d there be any vertex array support for vertex weights.
RESOLUTI ON: YES.

Shoul d we have a VertexWei ght 2f EXT that takes has two wei ght val ues?
RESOLUTI ON: NO. The weights are always vw and 1-vw.

VWhat is the "correct"” way to blend nmatrices, particularly when wo is
not one or the nodel view matrix is projective?

RESOLUTION: Wile it may not be 100% correct, the extension bl ends
the vertices based on transforning the object coordinates by

both M0 and ML, but the resulting w coordinate comes fromsinply
transform ng the object coordinates by M) and extracting the w

Anot her option would be to sinply blend the two sets of eye
coordi nates wi thout any special handling of w This is harder.

Anot her option would be to divide by w before blending the two
sets of eye coordinates. This is awkward because if the weight
is 1.0 with vertex weighting enabled, the result is not the
same as disabling vertex weighting since EYE LI NEAR t exgen

i s based of of the non-perspective corrected eye coordi nates.

166

NVIDIA OpenGL Extension Specifications EXT_vertex_weighting

As specified, the normal weighting and conbination is perfornmed on
unnormal i zed normals. Wuld the math work better if the normals
were normalized before wei ghting and conbi ni ng?

RESOLUTI ON: Vertex weighting of normals is after the
GL_RESCALE_NORVAL step and before the G.L_NORMALI ZE step

As specified, feedback and sel ection should apply vertex weighting
if enabled. Yuck, that would nean that we need software code for
vertex wei ghting.

RESOLUTION: YES, it should work with feedback and sel ecti on.

Sonetinmes it would be useful to mirror changes in both nodel vi ew
matrices. For exanple, the viewing transforms are likely to be
different, just the final nodeling transforms would be different.
Shoul d there be an APl support for mirroring transformations into
both matrices?

RESOLUTI ON: NO. Such support is likely to conmplicate the
matri x managenent in the OpenG.. Applications can do a

Get matrix from nodel viewd and then a LoadMatrix into nodel vi ewl
manual ly if they need to mirror things.

| also worry that if we had a mrrored nmatrix node, it would
doubl e the transform concatenation work if used naively.

Many of the changes to the two nodelview matrices will be the sanme.
For exanple, the initial view transformloaded into each will be the
same. Should there be a way to "mirror" changes to both nodel vi ew
matrices?

RESOLUTION:. NO. Mrroring matri x changes woul d conplicate the
driver’s managenent of matrices. Also, | amworried that naive
users would mirror all transforns and lead to |ots of redundant
matri x concatenations. The nost efficient way to handl e the
slight differences between the nodel view matrices is sinply

to GetFloat the prinmary matrix, LoadMatrix the values in the
secondary nodel view matri x, and then performthe "extra" transform
to the secondary nodel view matri x.

I deal ly, a gl CopyMatrix(CGLenum src, GLenum dst) type OpenCL
command could meke this nore efficient. There are simliar cases
where you want the nodelview matrix mrrored in the texture matri x.
This is not the extension to solve this mnor problem

The post-vertex weighting normal is unlikely to be normalized.
Shoul d this extension autonmatically enable normalization?

RESOLUTION: NO. Nornalization should operate as specifi ed.
The user is responsible for enabling GL_RESCALE NORMAL or
GL_NORMALI ZE as needed.

You coul d i magi ne cases where the application only sent

vertex weights of either zero or one and pre-nornalized nornals
so that GL_NORMALI ZE woul d not strictly be required.

167

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

Note that the vertex weighting of transformed normals occurs
BEFORE nornal i ze and AFTER rescaling. See the issue bel ow for
why this can nmake a difference

How does vertex weighting interact with OpenG. 1.2's G._RESCALE NORMAL
enabl e?

RESOLUTI O\ Vertex wei ghting of transfornmed normals occurs
BEFORE nornmal i ze and AFTER rescal i ng.

OpenGL 1.2 permits normal rescaling to behave just |ike normalize
and because nornalize inmediately follows rescaling, enabling
rescaling can be inplenentied by sinply always enabling normalize.
Vertex wei ghting changes this. |If one or both of the nodel view
matrices has a non-uniformscale, it nay be useful to enable
rescaling and normalize and this operates differently than
sinmply enabling normalize. The difference is that rescaling
occurs before the nornmal vertex weighting.
An inplementation that truly treated rescaling as a normalize
woul d support both a pre-weighting nornalize and a post-weighting
normal i ze. Arguably, this is a good thing.
For inplenentations that performsinply rescaling and not a ful
normali ze to inplenent rescaling, the rescaling factor can be
concatenated into each particular inverse nodel view matri x.
New Procedures and Functions
voi d VertexWei ght f EXT(fl oat wei ght);
voi d VertexWi ght fvEXT(fl oat *wei ght);

voi d VertexWei ght Poi nter EXT(i nt size, enumtype
sizei stride, void *pointer);

New Tokens
Accepted by the <target> paraneter of Enabl e:
VERTEX_WEI GHTI NG_EXT 0x8509
Accepted by the <nobde> paraneter of MatrixMde:

MODELVI EWD_EXT 0x1700 (alias to MODELVI EW enunerant)
MODELVI EWL_EXT 0x850A

168

NVIDIA OpenGL Extension Specifications EXT_vertex_weighting

Accepted by the <pname> paraneter of GetBool eanv, Getlntegerv,
CGet Fl oat v, and Get Doubl ev:

VERTEX_WEI GHTI NG_EXT
MODELVI EWD_EXT
MODELVI EWL_EXT

MODELVI EW)_MATRI X_EXT 0xOBA6 (alias to MODELVI EW MATRI X)
MODELVI EWL_MATRI X_EXT 0x8506
CURRENT _VERTEX_WEI GHT_EXT 0x850B
VERTEX_VEI GHT_ARRAY_EXT 0x850C

VERTEX_WEI GHT_ARRAY_SI ZE_EXT 0x850D
VERTEX_WEI GHT_ARRAY TYPE EXT Ox850E
VERTEX_WEI GHT_ARRAY_STRI DE_EXT O0x850F
MODELVI EW0_ STACK_DEPTH_EXT 0xOBA3 (alias to MODELVI EW STACK DEPTH)
MODELVI EWL_STACK_DEPTH_EXT 0x8502

Accepted by the <pname> paraneter of GetPointerv:
VERTEX_WVEI GHT_ARRAY_PO NTER_EXT 0x8510
Additions to Chapter 2 of the G. Specification (OpenG. Qperation)

-- Section 2.6. 2nd paragraph changed:
"Each vertex is specified with two, three, or four coordi nates.
In addition, a current normal, current texture coordi nates, current
color, and current vertex weight may be used in processing each
vertex."

-- Section 2.6. New paragraph after the 3rd paragraph
"A vertex weight is associated with each vertex. Wen vertex
wei ghting is enabled, this weight is used as a blending factor
to blend the position and normals transformed by the prinmary and
secondary nodel view matrix transforns. The vertex wei ghting
functionality takes place conpletely in the "vertex / norma
transformati on" stage of Figure 2.2."

-- Section 2.6.3. First paragraph changed to
"The only G. conmands that are allowed within any Begi n/End pairs are
the conmands for specifying vertex coordinates, vertex colors, nornal
coordi nates, and texture coordi nates (Vertex, Color, VertexWi ght EXT,
I ndex, Normal, TexCoord)..."

-- Section 2.7. New paragraph after the 4th paragraph
"The current vertex weight is set using

voi d VertexWei ghtfEXT(fl oat wei ght);
voi d VertexWi ght f vEXT(fl oat *wei ght);

This weight is used when vertex weighting is enabled."
-- Section 2.7. The last paragraph changes from

and one floating-point value to store the current col or index."

169

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

t o:
" one floating-point nunber to store the vertex wei ght, and one
floating-point value to store the current color index."

-- Section 2.8. Change 1st paragraph to say:

"The client may specify up to seven arrays: one each to store edge
flags, texture coordinates, colors, color indices, vertex weights,
normal s, and vertices. The conmands"

Add to functions listed followi ng first paragraph:

voi d VertexWei ght Poi nter EXT(i nt size, enumtype
sizei stride, void *pointer);

Add to table 2.4 (p. 22):

Conmand Si zes Types

Ver t exWei ght Poi nt er EXT 1 fl oat

Starting with the second paragraph on p. 23, change to add
VERTEX_WEI CHT_ARRAY_EXT:

"An individual array is enabled or disabled by calling one of

voi d Enabl ed i ent St at e(enum arr ay)
voi d Di sabl edient State(enum array)

with array set to EDCE_FLAG ARRAY, TEXTURE COORD ARRAY, COLOR_ARRAY,
| NDEX_ARRAY, VERTEX ARRAY_ WVEI GHT_EXT, NORMAL_ARRAY, or VERTEX_ ARRAY,
for the edge flag, texture coordinate, color, secondary color,

color index, normal, or vertex array, respectively.

The ith el ement of every enabled array is transferred to the GL by calling
void ArrayEl enent(int i)

For each enabled array, it is as though the correspondi ng command
fromsection 2.7 or section 2.6.2 were called with a pointer to
element i. For the vertex array, the corresponding command is

Vert ex<si ze><type>v, where <size> is one of [2,3,4], and <type> is
one of [s,i,f,d], corresponding to array types short, int, float, and
doubl e respectively. The correspondi ng conmands for the edge flag,
texture coordinate, color, secondary color, color index, and nornal
arrays are EdgeFl agv, TexCoord<si ze><type>v, Col or<size><type>v,

| ndex<t ype>v, VertexWi ghtfvEXT, and Nornal <type>v, respectively..."

Change pseudocode on p. 27 to disable vertex weight array for canned
interleaved array formats. After the lines

Di sabl ed i ent St at e(EDGE_FLAG _ARRAY) ;
Di sabl ed i ent St at e(| NDEX_ARRAY) ;

insert the line

170

NVIDIA OpenGL Extension Specifications EXT_vertex_weighting

Di sabl ed i ent St at e(VERTEX_WEI GHT_ARRAY_EXT) ;

Substitute "seven" for every occurrence of "six" in the fina

par agr aph on p. 27.
-- Section 2.10. Change the sentence:

"The nodel -view matrix is applied to these coordinates to yield eye
coordi nates. "

to:

"The primary nodel view natrix is applied to these coordinates to

yi el d eye coordi nates. Wen vertex weighting is enabled, a secondary
nodel view matrix is also applied to the vertex coordi nates, the
result of the two nodelview transformations are weighted by its
respective vertex weighting factor and conbi ned by addition to yield
the true eye coordinates. Vertex weighting is enabled or disabled
usi ng Enabl e and Di sable (see section 2.10.3) with an argunent of
VERTEX_WEI GHTI NG_EXT. "

Change the 4th paragraph to:

"I'f vertex weighting is disabled and a vertex in object coordinates
is given by (xo yo zo wo)’ and the primary nodel -view matrix is
M), then the vertex’'s eye coordinates are found as

(xe ye ze we)’ = M (x0 yo zo wo)’

If vertex weighting is enabled, then the vertex’'s eye coordinates
are found as

(xe0 ye0 ze0 we0)’ M) (X0 yo zo wo)’

(xel yel zel wel)’ = M (X0 yo zo wo)’

(xe,ye, ze)' = vw(xe0,ye0,ze0)’ + (1-vw) * (xel,yel, zel)’
we = we0

where ML is the secondary nodelview matrix and vw is the current
vertex weight."

-- Section 2.10.2 Change the 1st paragraph to say:

"The projection matrix and the primary and secondary nodel vi ew
matrices are set and nodified with a variety of comrands. The
affected matrix is deternmined by the current matrix node. The
current matrix node is set with

void MatrixMbde(enum node);
whi ch takes one of the four pre-defined constants TEXTURE
MODELVI EW), MODELVI EWL, or PRQIECTION (note that MODELVIEWis an

alias for MODELVIEW). TEXTURE is described later. |f the current
matrix is MODELVIEW), then matrix operations apply to the primary

171

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

nodel view matrix; if MODELVIEWL, then matrix operations apply to
the secondary nodelview matrix; if PROJECTION, then they apply to
the projection matrix."

Change the 9th paragraph to say:

"There is a stack of matrices for each of the matri x nodes. For the
MODELVI ENM and MODELVI EWL npdes, the stack is at least 32 (that is,
there is a stack of at |east 32 nodel view matrices). "

Change the | ast paragraph to say:

"The state required to inplenment transformations consists of a
four-valued integer indicating the current natrix node, a stack of

at least two 4x4 matrices for each of PRQIECTI ON and TEXTURE with
associ ated stack pointers, and two stacks of at |east 32 4x4 matrices
with an associated stack pointer for MODELVI EW and MODELVI EWL.
Initially, there is only one nmatrix on each stack, and all matrices
are set to the identity. The initial matrix node is MODELVI EVOD. "

-- Section 2.10.3 Change the 2nd and 7th paragraphs to say:

"For a nodelview matrix M the nornmal for this matrix is transfornmed
to eye coordi nates by:

(nx’ ny’ nz”) =(nx ny nz q) * M-1
where, if (x y z w)’ are the associated vertex coordi nates, then
o, w= 0

/
I
qg=1| -(nxnynz) (xy z)’ (2.1)
I , wl!l=0
\ w

| mpl ement ati ons may choose instead to transform(x y z)' to eye
coordi nates using

(nx’ ny’ nz’') = (nx ny nz) * Mi"-1

VWhere Mu is the upper leftnost 3x3 natrix taken from M
Rescale nultiplies the transformed normals by a scale factor

(nx" ny" nz") =f (nx’ ny’ nz')

If rescaling is disabled, then f = 1. |If rescaling is enabled, then
f is conputed as (mij denotes the matrix element in rowi and colum |

of M‘-1, nunbering the topnost row of the matrix as row 1 and the
| ef trost colum as colum 1

sqrt (nB1r2 + nB272 + nB372)

Note that if the normals sent to GL were unit |length and the nodel -vi ew
matrix uniformy scal es space, the rescal e make sthe transforned nornals

172

NVIDIA OpenGL Extension Specifications EXT_vertex_weighting

unit | ength.

Alternatively, an inplenmentation nmay chose f as

sqrt(nx’~2 + ny’' 2 + nz'"2)
reconmputing f for each normal. This nakes all non-zero | ength
normals unit length regardl ess of their input length and the nature
of the nodel view matri x.

After rescaling, the final transformed normal used in Iighting, nf,
depends on whether vertex weighting is enabled or not.

When vertex weighting is disabled, nf is conputed as
nf =m* (nx"0 ny"0 nz"0)

where (nx"0 ny"0 nz"0) is the nornmal transforned as descri bed
above using the primary nodelview matrix for M

If normalization is enabled nFl. O herw se

sqrt (nx"0”"2 + ny"0"2 + nz"0"2)

However when vertex weighting is enabled, the normal is transforned
twi ce as described above, once by the primary nodel view matri x and
again by the secondary nodel view matri x, wei ghted using the current
per-vertex weight, and normalized. So nf is conmputed as

nff =m* (nx"w ny"w nz"w)
where nw is the weighting normal conputed as
nw=vw?* (nx"0O ny"0 nz"0) + (1-vw) * (nx"1 ny"1l nz"1)
where (nx"0 ny"0 nz"0) is the nornmal transforned as descri bed
above using the prinmary nodelview matrix for M and (nx"1 ny"1 nz"1) is
the normal transforned as descri bed above using the secondary nodel vi ew
matrix for M and vw is the current pver-vertex weight."
-- Section 2.12. Changes the 3rd paragraph
"The coordinates are treated as if they were specified in a
Vertex conmand. The x, y, z, and w coordinates are transfornmed
by the current prinmary nodel vi ew and perspective matrices. These
coordi nates, along with current values, are used to generate a
color and texture coordinates just as done for a vertex, except
that vertex weighting is always treated as if it is disabled."
Additions to Chapter 3 of the G. Specification (Rasterization)

None

173

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

Additions to Chapter 4 of the G. Specification (Per-Fragnent Operations
and the Franebuffer)
None
Additions to Chapter 5 of the G. Specification (Special Functions)
None
Additions to Chapter 6 of the GL Specification (State and State Requests)
None
Additions to the G.X Specification
None
G.X Protocol
A new GL rendering comand is added. The following command is sent
to the server as part of a gl XRender request:
Ver t exWei ght f vVEXT
2 8 rendering comand | ength
2 4135 renderi ng comand opcode
4 FLOAT32 weightO
To support vertex arrays, the DrawArrays rendering conmand (sent via
a gl XRender or gl XRenderLarge request) is amended as foll ows:
The list of arrays listed for the third elenent in the ARRAY | NFO
structure is anended to include:
0x850c j=1 VERTEX_WEI GHT_ARRAY_EXT
The VERTEX DATA description is amended to include:
If the vertex weight array is enabl ed:
ws LI STof BYTE vertex weight array el enent
wp unused, wp=pad(ws)
with the follow ng paragraph anended to read:
"where ns, cs, is, ts, es, vs, ws is the size of the normal, color,
i ndex, texture, edge, vertex, and vertex weight array el enments and
np, cp, ip, tp, ep, vp, wp is the padding for the normal, color,
i ndex, texture, edge, vertex, and vertex weight array el ements,
respectively."
Errors

The current vertex weight can be updated at any tine. |In particular
Wi ght Vert exEXT can be call ed between a call to Begin and the
corresponding call to End.

I NVALI D VALUE is generated if VertexWi ght Poi nt er EXT paraneter <size>
is not 1.

174

NVIDIA OpenGL Extension Specifications

EXT_vertex_weighting

I NVALID ENUM i s generated if VertexWi ght Poi nter EXT paraneter <type>

i's not FLOAT.

I N\VALI D VALUE is generated if VertexWi ght Poi nter EXT paraneter <stride>

i s negative.

New St ate
(table 6.5, p196)
Get Val ue Type Get Gormand Initial Value Description Sec Attribute
QURRENT_VERTEX VA GHT_EXT F GetH oatv 1 Qurrent 2.8 current
vertex wei ght

(table 6.6, pl197)
Gt Val ue Type Get Gormand Initial Velue Description Sec Attribute
VERTEX VA G ARRAY EXT B | sEnabl ed Fal se \ertex wei ght enabl e 2.8 vertex-array
VERTEX VA GHT_ARRAY S ZE EXT 7+ Get I ntegerv 1 i ghts per vertex 2.8 vertex-array
VERTEX VA GIT_ARRAY_TYPE EXT 21 Get I nt egerv ALQAT Type of weights 2.8 vertex-array
VERTEX VA GIT_ARRAY_STR CE EXT z Get I nt egerv 0 Sride between wei ghts 2.8 vertex-array
VERTEX VA GHI_ARRAY_PQ NTER EXT Y Get Poi nterv 0 Pointer to vertex weight array 2.8 vertex-array
(table 6.7, pl98)
Gt Val ue Type Get Gonmand Initial Value Description Sec Atribute
MIEM BYO MNTR X EXT 32*xMl GetHoatv Identity Finary nodelview 210.2 -

stack
MIEM BAL_MATR X EXT 32*xM GetHoatv I dentity Secondary nodel view 2.10.2 -

stack
MIBEM BVO_STAXK DEPTH EXT Z+ Get I ntegerv 1 Finary nodelview 2.10.2 -

stack depth
MIEM BAL_STAK DEPTH EXT Z+ Get I nt egerv 1 Secondary nodel view 2.10.2 -

stack depth
MATR X MIE ZA Get I ntegerv MIEM B/O Qrrent natrix node 2.10.2 transform
VERTEX VA G NG EXT B | sknabl ed Fal se \ertex weighting 2.10.2 transformenabl e

on/ of f

NOE MEEMBVMIR X is an alias for MEEM B/0_MATR X EXT
MEEM BASTAK CEPTH i s an alias for MDEM EM@ STACK DEPTH EXT

New | npl enent ati on Dependent State

None

Revi si on Hi story

12/ 16/ 2000 anmended to include G.X protocol

for vertex arrays

5/ 25/ 2000 added m ssi ng MODELVI EW¢_MATRI X t okens val ues

175

NV_blend_square NVIDIA OpenGL Extension Specifications

Nanme
NV_bl end_square

Nanme Strings
GL_NV_bl end_square

Ver si on
Date: 8/7/1999 Version: 1.0

Nurber
194

Dependenci es
Witten based on the wording of the Qpen@ 1.2 specification.

Overvi ew
It is useful to be able to multiply a nunber by itself in the blending
stages -- for exanple, in certain types of specular lighting effects
where a result froma dot product needs to be taken to a high power.
Thi s extension provides four additional blending factors to pernit
this and other effects: SRC COLOR and ONE_ M NUS SRC COLOR for source
bl endi ng factors, and DST_COLOR and ONE_M NUS DST COLOR for destination
bl endi ng factors.

New Procedures and Functi ons
None

New Tokens
None

Additions to Chapter 2 of the G. Specification (OpenG. Qperation)
None

Additions to Chapter 3 of the G. Specification (Rasterization)

None

Additions to Chapter 4 of the G. Specification (Per-Fragnent Operations
and the Franebuffer)

Two |ines are added to each of tables 4.1 and 4. 2:

176

NVIDIA OpenGL Extension Specifications

SRC_COLOR

ONE_M NUS_SRC_COLCR

DST_COLOR

ONE_M NUS_DST_COLOR

SRC_ALPHA

ONE_M NUS_SRC_ALPHA

DST_ALPHA

ONE_M NUS_DST_ALPHA
CONSTANT_COLCR

ONE_M NUS_CONSTANT _COLOR
CONSTANT_ALPHA

ONE_M NUS_CONSTANT_ALPHA
SRC_ALPHA_SATURATE

Bl end Factors

As)

- (Rs, Gs, Bs,
Ad)

- (Rd, &d, Bd,
As) | Ka

- (As, As, As,
Ad) / Ka

- (Ad, Ad, Ad,

(Rc, &, Bc, Ac)

- (Rc, &, Bc,

(Ac, Ac, Ac, Ac)

(1, 1, 1, 1)
(f, f, f, 1)

- (Ac, Ac, Ac,

NV_blend_square

Table 4.1: Values controlling the source blending function and the
source bl endi ng val ues they conpute.

Val ue Bl end Factors
ZERO (0, 0, 0, 0)
ONE (1, 1, 1, 1)
SRC COLOR (Rs, Gs, Bs
ONE_M NUS_SRC_COLOR (1, 1, 1, 1)
DST_COLOR (Rd, &d, Bd
ONE_M NUS_DST_COLCR (1, 1, 1, 1)
SRC_ALPHA (As, As, As
ONE_M NUS_SRC_ALPHA (1, 1, 1, 1)
DST_ALPHA (Ad, Ad, Ad
ONE_M NUS_DST_ALPHA (1, 1, 1, 1)
CONSTANT_COLOR_EXT (Rc, Gc, Bc,
ONE_M NUS_CONSTANT _COLOR_EXT (1, 1,
CONSTANT_ALPHA EXT (Ac, Ac, Ac,
ONE_M NUS_CONSTANT _ALPHA EXT (1, 1,

f = mn(As,
As)
- (Rs, Gs, Bs,
Ad)
- (Rd, &d, Bd,
As) | Ka
- (As, As, As,
Ad) / Ka
- (Ad, Ad, Ad,
Ac)
1, 1) - (Rc,
Ac)
1, 1) - (Ac,

NEW
As) NEW
Ad)
As) Ka
Ad) /| Ka
Ac)
Ac)
1 - Ad).
As)
NEW
Ad) NEW
As) / Ka
Ad) / Ka
CGc, Bc, Ac)
Ac, Ac)

Tabl e 4.2: Values controlling the destination blending function and
t he destination bl endi ng val ues they conpute.

Additions to Chapter 5 of the G. Specification (Special

None

Functi ons)

Additions to Chapter 6 of the GL Specification (State and State Requests)

None

Additions to the G.X Specification

None

GLX Prot ocol

None

Errors

None

177

NV_blend_square

New St at e

(tabl e 6.15, page 205)
Get Val ue Type Get Command
BLEND SRC Z15 Cetlntegerv
BLEND_DST Z14 Cetlntegerv

NOTE:

New | npl enent ati on Dependent State

None

178

NVIDIA OpenGL Extension Specifications

Initial Value Sec Attribute
ONE 4.1.6 color-buffer
ZERO 4.1.6 color-buffer

the only change is that Z13 changes to Z15 and Z12 changes to Z14

NVIDIA OpenGL Extension Specifications NV_fence

Nanme
NV_fence
Nanme Strings
GL_NV _fence

Cont act

John Spitzer, NVID A Corporation (jspitzer "at’ nvidia.com

Not i ce
Copyri ght NvI DI A Corporation, 2000.
| P Status
NVI DI A Proprietary.
Thi s docunent is protected by copyright and contains infornmation
proprietary to NVID A Corporation. The receipt or possession of this
docunent does not convey any express or inplied rights to reproduce,
di scl ose, distribute or prepare deivative works its contents or to
manuf acture, use, sell or inport anything that it nay describe in
whol e or in part. The docunent is provided as is with no express
or inplied representation or warranty of any kind as the accuracy of
the information, its fitness for a particular purpose or otherw se.
Status
Shi ppi ng as of June 8, 2000 (version 1.0)

Ver si on

July 25, 2000 (version 1.0)
$Dat e$ $Revi si on$

Nunber
?7?
Dependenci es
None
Overvi ew

The goal of this extension is provide a finer granularity of

synchroni zing G. command conpl etion than offered by standard OpenQ,
which offers only two nmechani smfor synchronization: Flush and Finish
Since Flush merely assures the user that the conmands conplete in a
finite (though undeternined) anount of time, it is, thus, of only
nodest utility. Finish, on the other hand, stalls CPU execution
until all pending G. conmands have conpleted. This extension offers
a mddle ground - the ability to "finish" a subset of the conmand
stream and the ability to determ ne whether a given conmand has

179

NV_fence NVIDIA OpenGL Extension Specifications

conpl eted or not.

Thi s extension introduces the concept of a "fence" to the OpenG

command stream Once the fence is inserted into the command stream it
can be queried for a given condition - typically, its conpletion
Moreover, the application may al so request a partial Finish -- that is,
all commands prior to the fence will be forced to conplete until contro
is returned to the calling process. These new nechanisns allow for
synchroni zati on between the host CPU and the GPU, which may be accessing
the sane resources (typically nenory).

This extension is useful in conjunction with NV_vertex_array_range
to determ ne when vertex information has been pulled fromthe

vertex array range. Once a fence has been tested TRUE or finished,
all vertex indices issued before the fence nmust have been pull ed.
This ensures that the vertex data nenory corresponding to the issued
vertex indices can be safely nodified (assum ng no ot her outstanding
vertex indices are issued subsequent to the fence).

| ssues
Do we need an | sFenceNV conmand?

RESCLUTI ON: Yes. Not sure who would use this, but it's in there.
Semantics currently follow the texture object definition --
that is, calling |IsFenceNV before SetFenceNV will return FALSE.

Are the fences sharabl e between nultiple contexts?
RESOLUTI ON: No.
Potentially this could change with a subsequent extension
VWhat ot her conditions will be supported?

Only ALL COWLETED NV will be supported initially. Future extensions
may wi sh to inplenment additional fence conditions.

VWhat is the relative perfornance of the calls?

Execution of a SetFenceNV is not free, but will not trigger a
Flush or Finish

Is the TestFenceNV call really necessary? How often would this be used
conpared to the FinishFenceNV call (which also flushes to ensure this
happens in finite tine)?

It is conceivable that a user may use TestFenceNV to decide

whi ch portion of nmenory should be used next w thout stalling

the CPU. An exanple of this would be a scenario where a single
AGP buffer is used for both static (unchanged for multiple frames)
and dynami c (changed every frane) data. |If the user has witten
dynanic data to all banks dedicated to dynam c data, and stil

has nore dynam c objects to wite, the user would first want to
check if the first dynam c object has conpleted, before witing
into the buffer. |If the object has not conpleted, instead of
stalling the CPU with a FinishFenceNV call, it would possibly

180

NVIDIA OpenGL Extension Specifications NV_fence

be better to start overwiting static objects instead.

What shoul d happen if TestFenceNV is called for a name before Set FenceNV
is called?

We shoul d probably generate an error, and return TRUE

This follows the semantics for texture object names before
they are bound, in that they acquire their state upon binding.
We will arbitrarily return TRUE for consistency.

What shoul d happen if FinishFenceNV is called for a nane before
Set FenceNV is call ed?

RESOLUTI ON: Generate an | NVALI D_OPERATI ON error because the
fence id does not exist yet. SetFenceNV nust be called to create
a fence.

Do we need a nechanismto query which condition a given fence was
set with?

RESOLUTI ON: Yes, use gl Get Fencei vNV wi th FENCE_CONDI TI ON_NV.

Shoul d we all ow these conmands to be conpiled within display list?
VWi ch ones? How about wi thin Begin/End pairs?

RESCLUTI ON: Del et eFencesNV, GenFencesNv, Test FenceNV, and

| sFenceNV are executed i mredi ately while Fini shFenceNV and
Set FenceNV are conpiled. Do not allow any of these comrands
Wi t hin Begin/End pairs.

Can fences be used as a form of perfornmance nonitoring?

Yes, with some caveats. By setting and testing or finishing
fences, devel opers can neasure the GPU | atency for conpleting
GL operations. For exanple, devel opers nmight do the foll ow ng:

start = getCurrentTinme();

updat eText ures();

gl Set FenceNV(TEXTURE_LQAD FENCE, GL_ALL_COWPLETED NV);

dr awBackgr ound() ;

gl Set FenceNV(DRAW BACKGROUND_FENCE, G._ALL_COWPLETED NV);
dr awChar acters();

gl Set FenceNV(DRAW CHARACTERS_FENCE, G._ALL_COWPLETED NV);

gl Fi ni shFenceNV(TEXTURE_LQAD_FENCE) ;
t extureLoadEnd = get Current Ti ne();

gl Fi ni shFenceNV(DRAW BACKGROUND_FENCE) ;
dr awBackgroundEnd = getCurrentTi me();

gl Fi ni shFenceNV(DRAW CHARACTERS_FENCE) ;
dr awChar act ersend = getCurrentTi me();

printf("texture load time = %\ n", textureLoadEnd - start);
printf("draw background tinme %I\ n", drawBackgroundEnd - texturelLoadEnd);
printf("draw characters time %\ n", drawCharacters - drawBackgroundEnd);

Note that there is a small anobunt of overhead associated with
inserting each fence into the GL conmand stream Each fence

181

NV_fence NVIDIA OpenGL Extension Specifications

New

Addi

causes the GL command streamto nmonentarily idle (idling the
entire GPU pipeline). The significance of this idling should
be small if there are a small nuber of fences and | arge amount
of interveni ng conmands.
If the time between two fences is zero or very near zero,
it probably means that a GPU- CPU synchroni zati on such as a
gl Fi ni sh probably occurred. A glFinish is an explicit GPU CPU
synchroni zati on, but sonetines inplicit GPU CPU synchronizations
are perfornmed by the driver.

Procedures and Functi ons

voi d GenFencesNV(sizei n, uint *fences);

voi d Del et eFencesNV(si zei n, const uint *fences);

voi d Set FenceNV(uint fence, enum condition);

bool ean Test FenceNV(ui nt fence);

voi d Fi ni shFenceNV(uint fence);

bool ean | sFenceNV(ui nt fence);

voi d Get Fencei vNV(ui nt fence, enum pnane, int *parans);

Tokens

Accepted by the <condition> paraneter of SetFenceNV
ALL_COVPLETED NV 0x84F2

Accepted by the <pnane> paraneter of GetFencei vNV:

FENCE_STATUS_NV 0x84F3
FENCE_CONDI TI ON_NV 0x84F4

tions to Chapter 5 of the OpenG. 1.2.1 Specification (Special Functions)
Add to the end of Section 5.4 "Display Lists"

"Del et eFencesNV, GenFencesNV, GCet Fencei VNV, Test FenceNV, and |sFenceNV
are not conplied into display lists but are executed i mediately."

After the discussion of Flush and Finish (Section 5.5) add a
description of the fence operations:

"5.X Fences
The conmand
voi d Set FenceNV(uint fence, enum condition);
sets a fence within the G. command stream and assigns the fence a

status of FALSE and a condition as set by the condition argunent.
The condition argunent nust be ALL_COWPLETED NV. Once the fence’'s

182

NVIDIA OpenGL Extension Specifications NV_fence

condition is satisfied within the command stream its state is changed
to TRUE. For a condition of ALL COWPLETED NV, this is conpletion of
the fence command. No other state is affected by execution of the
fence command. A fence's state can be queried by calling the conmand

bool ean Test FenceNV(ui nt fence);
The conmand
voi d Fi ni shFenceNV(uint fence);
forces all GL commands prior to the fence to satisfy the condition
set within Set FenceNV, which, in this spec, is always conpletion
Fi ni shFenceNV does not return until all effects fromthese conmands
on GL client and server state and the franebuffer are fully realized.
The fence nmust first be created before it can be used. The conmand
voi d GenFencesNV(sizei n, uint *fences);
returns n previously unused fence nanes in fences. These nanes
are marked as used, for the purposes of GenFencesNV only, but acquire
bool ean state only when they have been set.
Fences are deleted by calling
voi d Del et eFencesNV(si zei n, const uint *fences);
fences contains n nanmes of fences to be deleted. After a fence is
deleted, it has no state, and its nane is again unused. Unused nanes
in fences are silently ignored.
If the fence passed to TestFenceNV or FinishFenceNV is not the nane
of a fence, the error INVALI D OPERATION is generated. 1In this case,
Test FenceNV will return TRUE, for the sake of consistency.
State nmust be maintained to indicate which fence integers are
currently used or set. In the initial state, no indices are in use.
When a fence integer is set, the condition and status of the fence
are also maintained. The status is a boolean. The condition is
the value last set as the condition by SetFenceNV.
Once the status of a fence has been finished (via FinishFenceNV)
or tested and the returned status is TRUE (via either TestFenceNV
or Get Fencei vNV queryi ng the FENCE STATUS NV), the status renains
TRUE until the next SetFenceNV of the fence."

Additions to Chapter 6 of the OpenG 1.2.1 Specification (State and State
Request s)

Insert new section after Section 6.1.10 "M nmax Query"
"6.1.11 Fence Query
The command

bool ean | sFenceNV(ui nt fence);

183

NV

Addi

GX

fence NVIDIA OpenGL Extension Specifications

return TRUE if texture is the nane of a fence. |If fence is not the
nane of a fence, or if an error condition occurs, |IsFenceNV returns
FALSE. A nane returned by GenFencesNV, but not yet set via SetFenceNV
is not the nane of a fence.
The command

voi d Get Fencei vNV(ui nt fence, enum pnane, int *parans)
obtains the indicated fence state for the specified fence in the array
paranms. pnhanme nmust be either FENCE _STATUS NV or FENCE _CONDI TI ON_NV.
The | NVALI D_OPERATION error is generated if the nanmed fence does
not exist."
tions to the GX Specification
None
Pr ot ocol

Seven new G commands are added.

The following two rendering conmands are sent to the sever as part
of a gl XRender request:

Set FenceNV
2 12 rendering conmand | ength
2 7?77 renderi ng comand opcode
4 CARD32 fence
4 CARD32 condi tion

Fi ni shFenceNV
2 8 renderi ng command | ength
2 ??7?7? renderi ng comand opcode
4 CARD32 fence

The remaining five comuands are non-rendering commands. These
conmands are sent separately (i.e., not as part of a gl XRender or
gl XRender Lar ge request), using the gl XVendorPrivateWthReply request:

Del et eFencesNV

1 CARD8 opcode (X assi gned)
1 17 GLX opcode (gl XVendor Pri vat eW t hRepl y)
2 4+n request length
4 ??7?7? vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 | NT32 n
n*4 LI STof CARD32 fences
GenFencesNV
1 CARD8 opcode (X assigned)
1 17 GLX opcode (gl XVendor Privat eW t hRepl y)
2 4 request length
4 7?77 vendor specific opcode
4 GLX_CONTEXT_TAG cont ext tag
4 | NT32 n

184

NVIDIA OpenGL Extension Specifications NV_fence

=>
1 1 reply
1 unused
2 CARD16 sequence numnber
4 n reply length
24 unused
n*4 LI STof CARD322 fences
| sFenceNV
1 CARD8 opcode (X assi gned)
1 17 GLX opcode (gl XVendor Pri vat eW t hRepl y)
2 4 request |ength
4 ??7?7? vendor specific opcode
4 GLX_CONTEXT_TAG cont ext tag
4 I NT32 n
=>
1 1 reply
1 unused
2 CARD16 sequence numnber
4 0 reply length
4 BOOL32 return val ue
20 unused
1 1 reply
Test FenceNV
1 CARD8 opcode (X assi gned)
1 17 GLX opcode (gl XVendor Privat eW t hRepl y)
2 4 request length
4 72?77 vendor specific opcode
4 GLX_CONTEXT_TAG cont ext tag
4 I NT32 fence
=>
1 1 reply
1 unused
2 CARD16 sequence numnber
4 0 reply length
4 BOOL32 return val ue
20 unused
Get Fencei vNV
1 CARD8 opcode (X assi gned)
1 17 GLX opcode (gl XVendor Privat eW t hRepl y)
2 5 request |ength
4 ??7?7? vendor specific opcode
4 GLX_CONTEXT_TAG cont ext tag
4 I NT32 fence
4 CARD32 pname
=>
1 1 reply
1 unused
2 CARD16 sequence numnber
4 m reply length, mr(n==1?0:n)
4 unused
4 CARD32 n

if (n=1) this follows:

185

NV_fence NVIDIA OpenGL Extension Specifications

4 I NT32 par ans
12 unused

otherwi se this foll ows:

16 unused
n*4 LI STof | NT32 par ams

Note that polling with Test FenceNV when using indirect GX rendering

will be considerably less efficient than using Fini shFenceNV

because TestFenceNV is an X protocol round-trip while FinishFenceNV

synchroni zes the GLX conmand stream w t hout an X protocol round-trip.
Errors

I NVALI D VALUE is generated if GenFencesNV paraneter <n> is negative.

I N\VALI D VALUE is generated if Del eteFencesNV paranmeter <n> is negative.

| NVALI D OPERATION is generated if the fence used in Test FenceNV or
Fi ni shFenceNV i s not the name of a fence.

INVALID ENUM i s generated if the condition used in Set FenceNV
is not ALL_COWPLETED_NV

| NVALI D_OPERATION is generated if any of the comands defined in
this extension is executed between the execution of Begin and the
correspondi ng execution of End.

| NVALI D OPERATION is generated if the naned fence in GetFencei vNV
does not exi st.

New St at e
Table 6. X. Fence njects.

Get val ue Type Get coomand Initial value Descri ption Section Attribute

FENCE _STATUS NV B GetFencei VWV deternmined by 1st Set FenceNV Fence status 5 X -
FENE OO TITONN 71 Get Fencei VNV deternmined by 1st Set FenceNV Fence condition 5. X -

New | mpl ement ati on Dependent State
None
GeForce Inplenmentation Details
This section describes inplenmentation-defined limts for GeForce:
Set FenceNV calls are not free. They should be used prudently,
and a "good nunber" of conmands shoul d be sent between calls to
Set FenceNV. Each fence insertion will cause the GPU s comrand
processing to go nmonentarily idle. Testing or finishing a fence

may require an one or nore sonewhat expensive uncached reads.

Do not |l eave a fence untested or unfinished for an extremely | arge
interval of intervening fences. |f nore than approximtely 2

186

NVIDIA OpenGL Extension Specifications NV_fence

Revi si on

None

billion (specifically 2731-1) intervening fences are inserted into
the GL command stream before a fence is tested or finished, said
fence may indicate an incorrect status. Note that certain G
operations involving display lists, conpiled vertex arrays, and
textures may insert fences inplicitly for internal driver use.

In practice, this limtation is unlikely to be a practi cal
limtation if fences are finished or tested within a few frames
of their insertion into the GL command stream

Hi story

187

NV_fog_distance NVIDIA OpenGL Extension Specifications

Name
NV_f og_di stance
Name Strings
GL_NV_fog_di stance
Noti ce
Copyright NvIDI A Corporation, 1999, 2000.
| P Status
NVIDI A Proprietary.
Thi s docunent is protected by copyright and contains information
proprietary to NVID A Corporation. The receipt or possession of this
docunent does not convey any express or inplied rights to reproduce,
di sclose, distribute or prepare deivative works its contents or to
manuf acture, use, sell or inport anything that it nay describe in
whol e or in part. The docunent is provided as is with no express
or inplied representation or warranty of any kind as the accuracy of
the information, its fitness for a particular purpose or otherw se.
Status
Shi ppi ng (version 1.0)
Ver si on
NVI DI A Date: July 27, 2000
Nunber

192

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

Dependenci es
Witten based on the wording of the Qpen@ 1.2 specification
Overvi ew

Ideally, the fog distance (used to conpute the fog factor as
described in Section 3.10) should be conputed as the per-fragnent
Eucl i dean distance to the fragnent center fromthe eye. |In practice,
i mpl enent ati ons "may choose to approxi mate the eye-coordinate

di stance fromthe eye to each fragnent center by abs(ze). Further,
[the fog factor] f need not be conputed at each fragnent, but may

be computed at each vertex and interpolated as other data are."

Thi s extension provides the application specific control over how
Open@ conputes the di stance used in conputing the fog factor.

The extension supports three fog di stance nodes: "eye pl ane absol ute",

where the fog distance is the absolute planar distance fromthe eye
pl ane (i.e., OpenG’s standard inplenentation allowance as cited above);

188

NVIDIA OpenGL Extension Specifications NV_fog_distance

"eye plane", where the fog distance is the signed planar distance
fromthe eye plane; and "eye radial", where the fog distance is
conputed as a Euclidean distance. In the case of the eye radi al
fog di stance node, the distance nay be conputed per-vertex and then
i nterpol ated per-fragnent.

The intent of this extension is to provide applications with better
control over the tradeoff between performance and fog quality.

The "eye planar"” nodes (signed or absolute) are straightforward

to inplenment with good performance, but scenes are consistently
under-fogged at the edges of the field of view The "eye radial"
node can provide for nore accurate fog at the edges of the field of
view, but this assunes that either the eye radial fog distance is
conputed per-fragnent, or if the fog distance is conmputed per-vertex
and then interpol ated per-fragment, then the scene nust be
sufficiently tessell ated.

| ssues
What shoul d the default state be?
| MPLEMENTATI ON DEPENDENT.

The EYE _PLANE ABSOLUTE NV node is the nbst consistent with the way
nost current OpenGL inplenentations are inplenented without this
ext ensi on, but because this extension provides specific contro
over a capability that core OpenG is intentionally |ax about,

the default fog distance node is left inplenmentation dependent.

We woul d not want a future OpenCGL inplenentation that supports
fast EYE _RADI AL_NV fog distance to be stuck using sonething |ess.

Advice: |If an inplenmentation can provide fast per-pixel EYE RAD AL_NV
support, then EYE_ RADIAL_NV is the ideal default, but if not, then
EYE _PLANE ABSOLUTE NV is the npbst reasonabl e default nbde
How does this extension interact with the EXT fog coord extension?
| f FOG COORDI NATE_SOURCE EXT is set to FOG COORDI NATE EXT,
then the fog distance node is ignored. However, the fog
di stance node is used when the FOG COORDI NATE SOURCE EXT i s
set to FRAGVENT DEPTH EXT. Essentially, when the EXT fog coord
functionality is enabled, the fog distance is supplied by the
user-supplied fog-coordinate so no autonatic fog di stance conputation
is perforned.
New Procedures and Functions
None
New Tokens

Accepted by the <pname> paraneters of Fogf, Fogi, Fogfv, Fogiv,
Get Bool eanv, Getlntegerv, GetFloatv, and Get Doubl ev:

FOG_DI STANCE_MODE_NV 0Xx855A

When t he <pnane> paraneter of Fogf, Fogi, Foggv, and Fogiv, is

189

‘Arelalidold vIAQIAN

'666T ‘Uoirelodiod VIAIAN WbuAdoD

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_fog_distance NVIDIA OpenGL Extension Specifications

FOG DI STANCE_MODE NV, then the value of <parant or the val ue pointed
to by <parans> nmay be

EYE_RADI AL_NV 0x855B
EYE_PLANE
EYE_PLANE_ABSOLUTE_NV 0x855C

Additions to Chapter 2 of the 1.2 Specification (QpenG Operation)

None

Additions to Chapter 3 of the 1.2 Specification (Rasterization)

Section 3.10 "Fog"
Add to the end of the 3rd paragraph

"I'f pnane is FOG DI STANCE_ MODE NV, then param nust be, or parans
nmust point to an integer that is one of the synbolic constants
EYE_PLANE_ABSCOLUTE_NV, EYE_PLANE, or EYE_RADI AL_NV and this synbolic
constant determ nes how the fog di stance should be conputed.™

Repl ace the 4th paragraph begi nning "An inplenentati on may choose
to approximate ..." wth:

"When the fog distance nbde is EYE PLANE ABSOLUTE NV, the fog

di stance z is approximated by abs(ze) [where ze is the Z conponent
of the fragnment’s eye position]. Wen the fog distance node is
EYE PLANE, the fog distance z is approxi mated by ze. Wen the

fog distance node is EYE RADIAL_NV, the fog distance z is conputed
as the Euclidean distance fromthe center of the fragnment in eye
coordinates to the eye position. Specifically:

z = sgrt(xe*xe + ye*ye + ze*ze);

In the EYE RADI AL_NV fog di stance node, the Euclidean distance
is permitted to be conputed per-vertex, and then interpol ated
per-fragment."

Change the | ast paragraph to read:

"The state required for fog consists of a three valued integer to
select the fog equation, a three valued integer to select the fog

di stance node, three floating-point values d, e, and s, and RGBA fog
color and a fog color index, and a single bit to indicate whether

or not fog is enabled. In the initial state, fog is disabled,

FOG MODE is EXP, FOG DI STANCE NV is inplenmentation defined, d =

1.0, e =1.0, and s = 0.0; & =(0,0,0,0) and if = 0."

Additions to Chapter 4 of the 1.2 Specification (Per-Fragnment Operations
and the Frane Buffer)

None

Additions to Chapter 5 of the 1.2 Specification (Special Functions)

None

190

NVIDIA OpenGL Extension Specifications NV_fog_distance

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)
None
Additions to the G.X Specification
None
Errors
I NVALI D ENUM i s generated when Fog is called with a <pname> of
FOG DI STANCE_MODE NV and the val ue of <param> or what is pointed
to by <parans> is not one of EYE PLANE ABSOLUTE NV, EYE PLANE,
or EYE_RADI AL_NV.
New St at e

(table 6.8, pl98) add the entry:

Get Val ue Type Get Command Initial Value Descri ption Sec Attribute
FOG DI STANCE_MODE_ NV Z3 GetIntegerv inplenmentation Det erm nes how 3.10 fog
dependent fog distance
is conputed

New | mpl ement ation State

None

191

‘Arejanndold vIAQIAN

'666T ‘uoneiodio)d vIAIAN ybuAdoD

NV_

Name

light_max_exponent NVIDIA OpenGL Extension Specifications

NV_Iight _max_exponent

Nanme Strings

Not i

GL_NV_l i ght _nmax_exponent
ce

Copyright NvIDI A Corporation, 1999, 2000.

Ver si on

May 20, 1999

Nunber

189

Dependenci es

None

Overvi ew

Addi

Default OpenG. does not permit a shininess or spot exponent over
128.0. This extension permts inplementations to support and
advertise a maxi nrum shi ni ness and spot exponent beyond 128. 0.
Note that extrenely high exponents for shininess and/or spot I|ight
cutoff will require sufficiently high tessellation for acceptable
[ighting results.

Paul Deifenbach’s thesis suggests that higher exponents are
necessary to approximate BRDFs with per-vertex |igthing and
mul ti pl e passes.

Procedures and Functi ons

None

Tokens

Accepted by the <pnane> paraneters of GetBool eanv, Getlntegerv,
Get Fl oatv, and Get Doubl ev:

MAX_SHI NI NESS_NV 0x8504
MAX_SPOT_EXPONENT _NV 0x8505

tions to Chapter 2 of the GL Specification (OpenG. Operation)
In Table 2.7, change the srmrange entry to read:
"(range: [0.0, value of MAX SH NI NESS NV])"

In Table 2.7, change the srli range entry to read:

192

NVIDIA OpenGL Extension Specifications NV_light_max_exponent

“"(range: [0.0, value of MAX SPOT_EXPONENT_NV])"
Add to the end of the second paragraph in Section 2.13.2:

"The val ues of MAX_SHI NI NESS_NV and MAX_SPOT_EXPONENT_NV are
i mpl ement ati on dependent, but nust be equal or greater than 128."

Additions to Chapter 3 of the G. Specification (Rasterization)
None

Additions to Chapter 4 of the G. Specification (Per-Fragnent Operations
and the Franebuffer)

None.
Additions to Chapter 5 of the G. Specification (Special Functions)
None
Additions to Chapter 6 of the GL Specification (State and State Requests)
None
Additions to the G.X Specification
None
GLX Protocol
None
Errors

I N\VALI D VALUE is generated by Material if enumis SH NI NESS and the
shininess paramis greater than the MAX_SHI NI NESS_ Nv.

I N\VALI D VALUE is generated by Material if enumis SPOT_EXPONENT and
the shininess paramis greater than the MAX SPOT_EXPONENT_NV.

New St at e
None.

New | npl enent ati on Dependent State

193

NV_light_ max_exponent NVIDIA OpenGL Extension Specifications

(table 6.24, p214) add the follow ng entries:

M ni mum

Get Val ue Type Get Conmand Val ue Description Sec Attribute
MAX_SHI NI NESS_NV Z+ Getlntegerv 128 Maxi mum 2.13.2 -

shi ni ness for

specul ar |ighting
MAX_SPOT_EXPONENT_NV Z+ Cet I ntegerv 128 Maxi mum 2.13.2 -

exponent for

spot lights

NVIDI A | npl enentation Details
NVIDI A's Release 4 drivers incorrectly and accidently advertised this
extension with an "EXT" prefix instead of an "NV' prefix. Release 5
and later drivers correctly advertise this extension with an "NV'
ext ensi on.

Revi si on History

5/20/00 - earlier versions of this specification had the incorrect
enuner ant val ues which did not match NVID A s driver inplementation.

194

NV_register_combiners NVIDIA OpenGL Extension Specifications

Name
NV_r egi st er _conbi ners

Nanme Strings
GL_NV_regi ster_conbi ners

Noti ce
Copyright NvIDI A Corporation, 1999, 2000.

| P Status
NVIDI A Proprietary.
Thi s docunent is protected by copyright and contains information
proprietary to NVIDH A Corporation as designated in the docunent.
The recei pt or possession of this docunent does not convey any express
or inplied rights to reproduce, disclose, distribute or prepare
dei vative works its contents or to manufacture, use, sell or inport
anything that it nmay describe in whole or in part. The docunent is
provided as is with no express or inplied representation or warranty
of any kind as the accuracy of the information, its fitness for a
particul ar purpose or otherw se.

St at us
Shi pping (version 1.1)

Ver si on

NVI DI A Date: July 25, 2000 (version 1.1)
$Dat e$ $Revi si on$

Nunber
191
Dependenci es

ARB multitexture, assuming the value of MAX_ ACTI VE_TEXTURES ARB i s
at | east 2.

Witten based on the wording of the Qpen@ 1.2 specification with
the ARB nultitexture appendi x E

Overvi ew

NVI DI A's next-generation graphics processor and its derivative designs
support an extrenely configurabl e nechani sm know as "regi ster conbi ners”
for conputing fragment col ors.

The regi ster conbiner nechanismis a significant redesign of NVID A s
original TNT conbi ner nechanismas introduced by NVIDIA' s Rl VA

TNT graphics processor. Famliarity with the TNT conbiners wll

hel p the reader appreciate the greatly enhanced regi ster conbiners

195

‘Arelalidold vIAQIAN

'666T ‘Uoitelodiod VIAIAN WbuAdoD

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_register_combiners NVIDIA OpenGL Extension Specifications

functionality (see the NV_texture_env_conbi ne4 OpenG. extension
specification for this background). The register comnbiner nmechani sm
has the follow ng enhanced functionality:

The nuneric range of conbi ner conputations is from|[-1, 1]
(instead of TNT's [0, 1] numeric range),

The set of avail able conbiner inputs is expanded to include the
secondary color, fog color, fog factor, and a second conbi ner
constant color (TNT's avail abl e conbi ner inputs consist of

only zero, a single conbiner constant color, the primary col or,
texture 0, texture 1, and, in the case of conmbiner 1, the result
of comnbi ner 0).

Each conbi ner variable input can be independently scal ed and
bi ased into several possible nuneric ranges (TNT can only
conpl enent conbi ner inputs).

Each conbi ner stage conputes three distinct outputs (instead
TNT' s singl e conbi ner output).

The out put operations include support for computing dot products
(TNT has no support for conputing dot products).

After each output operation, there is a configurable scale and bias
applied (TNT's conbi ner operations builds in a scale and/or bias
into sone of its conbiner operations).

Each input variable for each conbiner stage is fetched from any
entry in a conbiner register set. Mreover, the outputs of each
conbi ner stage are witten into the register set of the subsequent
combi ner stage (TNT could only use the result from conbiner 0 as
a possible input to combiner 1; TNT | acks the notion of an

i nput/out put register set).

The regi ster conbi ner nechani sm supports at | east two general conbiner
stages and then a special final conbiner stage appropriate for

appl ying a color sumand fog conputation (TNT provides two sinpler
conbi ner stages, and TNT's col or sum and fog stages are hard-wired
and not subsumed by the conbiner nechanismas in register conbiners).

The register conbiners fit into the OpenG. pipeline as a rasterization
processi ng stage operating in parallel to the traditional OpenGL
texture environnent, color sum AND fog application. Enabling this
ext ensi on bypasses QpenG.’'s existing texture environnent, color sum
and fog application processing and i nstead use the regi ster conbiners.
The conbi ner and texture environment state is orthogonal so

nodi fyi ng conbi ner state does not change the traditional OCpenGL
texture environment state and the texture environment state is

i gnored when conbi ners are enabl ed.

Open@ application devel opers can use the register comnbiner nechani sm
for very sophisticated shading techniques. For exanple, an

approxi mation of Blinn's bunp mappi ng techni que can be achi eved with
the conbi ner nechanism Additionally, multi-pass shadi ng nodel s

that require several passes with unextended OpenG. 1.2 functionality
can be inplenented in several fewer passes with regi ster conbiners.

196

NVIDIA OpenGL Extension Specifications NV_register_combiners

| ssues
Shoul d we expose the full register conbiners nechani snf?

RESOLUTION:. NO. W ignore snall bits of NV10 hardware
functionality. The texture LOD input is ignored. W also ignhore
the inverts on input to the EF product.

Do we provide full gets for all the conbiner state?
RESCLUTI ON: YES

Do we paraneterize conbiner input and output updates to avoid
enuner ant expl osi ons?

RESOLUTI ON: YES. To update a conbi ner stage input variable, you
need to specify the <stage>, <portion> and <variable> To update a
conbi ner stage out put operation, you need to specify the <stage> and
<portion>. This does nmean that we need to add special Get routines
that are |ikew se paraneterized. Hence, Get Conbinerl nputParaneter*,
Get Conbi ner Qut put Par anet er*, and Get Fi nal Conbi ner | nput Par anet er *.

I's the register conbiner functionality a super-set of the TNT conbi ner
functionality?

Yes, but only in the sense of being a conputational super-set.

Al'l computations performed with the TNT conbi ners can be perforned
with the register conbiners, but the sequence of operations necessary
to configure an identical conputational result can be quite
different.

‘Arelalidold vIAQIAN

'666T ‘Uoirelodiod VIAIAN WbuAdoD

For exanple, the TNT conbi ners have an operation that includes

a final conplenment operation. The register conbiners can perform
range mappings only on inputs, but not on outputs. The register
conbiners can mmic the TNT operation with a post-operation

compl enent only by taking pains to conpl enent on input any uses
of the output in |ater conbiner stages.

What this does nean is that NV10's hardware functionality
will permt support for both the NV register _conbi ners AND
NV_t ext ure_env_conbi ne4 extensi ons.

Not e the existance of an "speclit" input conplenent bit supported
by NV10 (but not accessible through the NV _regi ster_conbi ners extensions).

Shoul d we say anything about the precision of the conbiner
conput ati ons?

RESOLUTION: NO. The spec is witten as if the conputations are
done on floating point values ranging from-1.0 to 1.0 (clanping is
specified where this range is exceeded). The fact that NV10 does
the conputations as 9-bit signed fixed point is not nmentioned in
the spec. This pernits a future design to support nore precision
or use a floating pointing representation

What should the initial conbiner state be?

197

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_register_combiners NVIDIA OpenGL Extension Specifications

RESOLUTI ON: See tables NV_register_conbiners.4 and

NV_regi ster_conbiners.5. The default state has one general conbiner
stage active that nodul ates the incom ng color with texture 0.

The final conbiner is setup initially to inplenent OpenG 1.2's
standard col or sum and fog stages.

What shoul d happen to the TEXTUREO ARB and TEXTUERL_ARB inputs if
one or both textures are disabl ed?

RESOLUTI ON: The val ue of these inputs is undefined.

What do the TEXTUREO_ARB and TEXTURE1_ARB inputs correspond to?
Does the nunber correspond to the absolute texture unit nunber
or is the nunber based on how many textures are enabled (ie,
TEXTURE_ARBO woul d correspond to the 2nd texture unit if the
2nd unit is enabled, but the 1st is disabled).

RESOLUTI ON: The absolute texture unit.

This should be a ot less confusing to the progranmmer than having
the texture inputs switch textures if texture O is disabled.

Note that the proposed hardware actually determ nes the TEXTUREO
and TEXTUREL i nput based on which texture is enabled. This neans
it isuptothe ICDto properly update the conbiner state when just
one texture is enabled. Since we will already have to do this to
track the standard OpenGL texture environnent for ARB_nultitexture,
we can do it for this extension too.

Shoul d the conbiners state be PushAttri b/ PopAttrib ed along with
the texture state?

RESOLUTI ON: YES
Shoul d we advertise the LOD fractional input to the conbiners?
RESOLUTI ON: NO.

There will be a performance inpact when two conbi ner stages are
enabl ed versus just one stage. Should we nention that sonewhere?

RESCLUTION: NO. (But it is worth mentioning in this issues
section.)

Shoul d the scale and bias for the Conbi ner Qut put NV be indi cated
by enunerants or specified outright as floats?

RESOLUTI ON: ENUMERANTS. Wil e sone future conbiners m ght
support an arbitrary scale & bias specified as floats, NV10 just
does the enunerated options.

Shoul d a dot product be conputed in parralel with the sum of
product s?

RESOLUTI ON: NO. Language has been added ot the Conbi ner Qut put NV
di scussion saying that if either <abDot Product> or <cdDot Product >

198

NVIDIA OpenGL Extension Specifications

is true,

t hen <sunfut put > nust be G._DI SCARD.

NV_register_combiners

The rationale for this is that we want to minimze the nunber of
adders that are required to ease a transition to floating point.

New Procedures and Functions

voi d Conbi ner Par anet er f vNV(GL.enum pnane,

voi d

voi d

voi d

voi d

voi d

const GL.float *paramns);

Conbi ner Par anet eri vNV(GLenum pnane,
const GLint *parans);

Conbi ner Par anet er f N\V(GL.enum pnane,

GLfl oat paran);

Conbi ner Par anet eri NV(GLenum pnane,

GLint paran);

Conbi ner | nput NV(GLenum st age,

GLenum portion,

GLenum vari abl e,
GLenum i nput,

GLenum mappi ng,

GLenum conponent Usage) ;

Conbi ner Qut put NV(GLenum st age,

GLenum porti on,
GLenum abQut put
GLenum cdCQut put ,
GLenum sunmQut put ,
GLenum scal e,
GLenum bi as,

GA.bool ean abDot Pr oduct ,
GA.bool ean cdDot Pr oduct ,

GLbool ean nmuxSunj ;

voi d Fi nal Combi ner | nput NV(GL.enum vari abl e,

GLenum i nput
GLenum nappi ng,

G.enum conponent Usage) ;

voi d Get Conbi ner | nput Par anet er f vNV(GLenum st age,

GLenum portion,
GLenum vari abl e,

GLenum pnane,

G.fl oat *parans);

voi d Get Conbi ner | nput Par anet eri vNV(GL.enum st age,

GLenum portion,
GLenum vari abl e,

GLenum pnane,

GLint *parans);

199

‘Arejanndold vIAQIAN

'666T ‘Uoirelodiod VIAIAN WbuAdoD

NV_register_combiners NVIDIA OpenGL Extension Specifications

voi d Get Conbi ner Qut put Par anet er f vNV(GLenum st age,
GLenum porti on,
GLenum pnarne,
G.fl oat *parans);

voi d Get Conbi ner Qut put Par anet eri vNV(GLenum st age,
GLenum portion,
GLenum pnane,
GLi nt *paramns);

voi d Get Fi nal Conbi ner | nput Par anet er f vNV(GL.enum vari abl e,
GLenum pnarne,
G.fl oat *parans);
voi d Get Fi nal Conbi ner | nput Par anet eri vNV(G.enum vari abl e,
GLenum pnane,
G.fl oat *parans);
New Tokens
Accepted by the <cap> paraneter of Enable, Disable, and |sEnabl ed,
and by the <pnane> paraneter of GetBool eanv, Getlntegerv,
Get Fl oatv, and Get Doubl ev:
REG STER_COVBI NERS_NV 0x8522

Accepted by the <stage> paraneter of Conbi nerl nput NV,

Copyright NVIDIA Corporation, 1999.

E\ Conbi ner Qut put NV, Get Conbi ner | nput Par anmet er f vNV,
] Get Conbi ner | nput Par anet eri vNV, Get Conbi ner Qut put Par anet er f vV,
D and Get Conbi ner Qut put Par anet eri vNV:

| -

o COVBI NERO_NV 0x8550

o COVBI NERL_NV 0x8551
al COVBI NER2_NV 0x8552
< COVBI NER3_NV 0x8553
— COVBI NER4_NV 0x8554
o COVBI NER5_ NV 0x8555
> COMBI NER6_NV 0x8556
prd COVBI NER7_NV 0x8557

Accepted by the <variabl e> paraneter of Conbi nerl nput NV,
Get Conbi ner | nput Par anet er f vNV, and Get Conbi ner | nput Par anet eri vNV:

VAR ABLE_A NV 0x8523
VAR ABLE_B_NV 0x8524
VARI ABLE_C NV 0x8525
VARI ABLE_D NV 0x8526

200

NVIDIA OpenGL Extension Specifications

NV_register_combiners

Accepted by the <vari abl e> paraneter of Final Conbi nerl nput NV,

Get Fi nal Conbi ner | nput Par anet er f vNV, and
Get Fi nal Conbi ner | nput Par anet eri vNV:

VAR ABLE_A NV
VAR ABLE_B_NV
VARI ABLE_C_NV
VARI ABLE_D NV
VAR ABLE_E_NV
VAR ABLE_F_NV
VAR ABLE_G_NV

0x8527
0x8528
0x8529

Accepted by the <input> paranmeter of Conbiner

ZERO
CONSTANT_COLORO_NV
CONSTANT_COLOR1_NV
FOG

PRI MARY_COLOR_NV
SECONDARY_COLOR_NV
SPAREO_NV
SPAREL_NV
TEXTUREO_ARB
TEXTUREL_ARB

Accept ed by the <mappi ng> paraneter of

UNSI GNED_I DENTI TY_NV
UNSI GNED_I NVERT_NV
EXPAND_NORVAL_NV
EXPAND_NEGATE_NV
HALF_BI AS_NORMAL_NV
HALF_BI AS_NEGATE_NV
SI GNED_| DENTI TY_NV
SI GNED_NEGATE_NV

Accepted by the <input> paraneter of

ZERO
CONSTANT_COLORO_NV
CONSTANT_COLORL_NV

FOG

PRI MARY_COLOR_NV
SECONDARY_COLOR_NV

SPAREO_NV

SPAREL_NV

TEXTUREO_ARB

TEXTUREL_ARB

E_TIMES_F_NV
SPAREO_PLUS_SECONDARY_COLOR_NV

Ox852A
0x852B

0x852C
0x852D
0Ox852E
0x852F

I nput NV:

(not new)

(not new)

(see ARB mnultitexture)
(see ARB multitexture)

Conbi ner | nput NV:

0x8536
0x8537
0x8538
0x8539
0x853A
0x853B
0x853C
0x853D

0x8531
0x8532

Fi nal Corbi ner | nput NV:

(not new)

(not new)

(see ARB nultitexture)
(see ARB nultitexture)

Accept ed by the <mappi ng> paraneter of Final Conbi nerl nput NV:

UNSI GNED_| DENTI TY_NV
UNSI GNED_| NVERT_NV

201

‘Arelalidold vIAQIAN

'666T ‘Uoirelodiod VIAIAN WbuAdoD

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_register_combiners NVIDIA OpenGL Extension Specifications

Accepted by the <scal e> paraneter of Conbi ner Qut put NV:

NONE (not new)
SCALE_BY_TWO_NV 0x853E
SCALE_BY_FOUR_NV 0x853F
SCALE_BY_ONE_HALF_NV 0x8540

Accepted by the <bias> paraneter of Conbi ner Qut put NV:

NONE (not new)
Bl AS_BY_NEGATI VE_ONE_HALF_NV 0x8541

Accepted by the <abQutput>, <cdQutput> and <sumQut put> paraneter
of Conbi ner Qut put NV:

DI SCARD_NV 0x8530
PRI MARY_COLOR_ NV
SECONDARY_COLOR NV

SPAREO_NV
SPARE1_NV
TEXTUREO _ARB (see ARB multitexture)
TEXTUREL1_ARB (see ARB multitexture)

Accepted by the <pnane> paraneter of GetConbi nerl nput ParaneterfvNV
and Get Conbi ner | nput Par anet eri vNV;

COMVBI NER_| NPUT_NV 0x8542
COVBI NER_MAPPI NG_NV 0x8543
COMBI NER_COMPONENT _USAGE_NV 0x8544

Accepted by the <pnane> paraneter of Get Conbi ner Qut put Par anet er f vNV
and Get Conbi ner Qut put Par anet eri vNV:

COVBI NER_AB_DOT_PRODUCT_NV 0x8545
COVBI NER_CD_DOT_PRODUCT_NV 0x8546
COVBI NER_MUX_SUM NV 0x8547
COVBI NER_SCALE_NV 0x8548
COVBI NER_BI AS_NV 0x8549
COVBI NER_AB_OUTPUT_NV 0x854A
COVBI NER_CD_OUTPUT_NV 0x854B
COVBI NER_SUM OUTPUT NV 0x854C

Accept ed by the <pname> paraneter of Conbi nerParaneterfvNV,
Conbi ner Par anet eri vNV, Get Bool eanv, Get Doubl ev, GetFl oatv, and
Cet | nt egerv:

CONSTANT_COLORO_ NV
CONSTANT_COLORL_NV

Accept ed by the <pnane> paraneter of Conbi nerParaneterfvNyV,
Conbi ner Par amet eri vNV, Conbi ner Par anet er f NV, Conbi ner Par anmet eri NV,
Get Bool eanv, Get Doubl ev, GetFloatv, and Getlntegerv:

NUM_GENERAL_COVBI NERS_NV 0Xx854E
COLOR_SUM CLAMP_NV 0x854F

202

NVIDIA OpenGL Extension Specifications NV_register_combiners

Accepted by the <pname> paraneter of GetFi nal Conbi nerl nput Paranet erfvNV
and Get Fi nal Conbi ner | nput Par aret eri vNV

COVBI NER_| NPUT_NV
COVBI NER_MAPPI NG_NV
COVBI NER_COVPONENT _USAGE_NV

Accepted by the <pname> paraneter of GetBool eanv, Get Doubl ev,
Get Fl oatv, and Getl ntegerv:

MAX_GENERAL_ COMVBI NERS_NV 0x854D
Additions to Chapter 2 of the 1.2 Specification (OpenG. Operation)
None
Additions to Chapter 3 of the 1.2 Specification (Rasterization)
-- Figure 3.1 "Rasterization" (page 58)
+ Change the "Texturing" block to say "Texture Fetching".

+ Insert a new bl ock between "Texture Fetching" and "Col or Suni.
Nanme the new bl ock "Texture Environnment Application”.

+ Insert a new block after "Texture Fetching”. Name the new bl ock
"Regi ster Conbiners Application”

+ The output of the "Texture Fetching" stage feeds to both "Texture
Envi ronment Application" and "Regi ster Conbi ners Application”

+ The input for "Color Sum cones from "Texture Environnent
Appli cation".

+ The output to "Fragnments" is switched (controlled by
Di sabl e/ Enabl e REG STER_COMVBI NERS_NV) between the output of "Fog"
and "Regi ster Conbiners Application".

Essentially, when register conbiners are enabled, the entire standard
texture environnent application, color sum and fog bl ocks are
replaced with the single register conmbiners block. [Note that this
is different fromhow the NV_texture_env_comnbi ne4 extensi on works;
that extension controls the texture environnent application

bl ock, but still uses the standard col or sum and fog bl ocks.]

-- NEW Section 3.8.12 "Regi ster Conbi ners Application”

"In parallel to the texture application, color sum and fog processes
described in sections 3.8.10, 3.9, and 3.10, regi ster conbiners provide
a neans of conputing fcoc, the final conbiner output color, for

each fragnent generated by rasterization.

The regi ster conbiners consist of two or nore general conbiner stages
arranged in a fixed sequence ordered by each conbi ner stage’s nunber.
An i npl enentation supports a maxi mum nunber of general conbiners
stages, which may be queried by calling Getlntegerv with the synbolic
const ant MAX_GENERAL_COMBI NERS_NV. | npl ement ati ons nust

203

‘Arelalidold vIAQIAN

'666T ‘Uoirelodiod VIAIAN WbuAdoD

NV_register_combiners NVIDIA OpenGL Extension Specifications

support at |east two general conbiner stages. The general conbiner

stages are named COMVBI NERO_NV, COMBI NER1_NV, and so on.

Each general conbiner in the sequence receives its inputs and
conputes its outputs in an identical manner. At the end of the
sequence of general conbiner stages, there is a final conbiner stage
that operates in a different manner than the general conbi ner stages.
The general conbiner operation is described first, followed by a
description of the final conbiner operation

Each conbi ner stage (the general conbiner stages and the final
conbi ner stage) has an associ ated conbi ner regi ster set. Each
conbi ner register set contains <n> RGBA vectors wi th conponents
ranging from-1.0 to 1.0 where <n> is 8 plus the maxi num nunber
of active textures supported (that is, the inplenmentation’s val ue
for MAX ACTI VE_TEXTURES ARB). The conbiner register set entries
are listed in the table NV_regi ster_conbi ners. 1.

[Table NV_register _conbiners.1]

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

Initial Qut put
Regi st er Nane Val ue Ref er ence St at us
ZERO 0 - read only
CONSTANT_COLORO_NV cccO Section 3.8.12.1 read only
CONSTANT_COLOR1_NV cccl Section 3.8.12.1 read only
FOG Cf Section 3.10 read only
PRI MARY_COLOR_NV cpri Section 2.13.1 read/ wite
SECONDARY_COLOR_NV csec Section 2.13.1 read/ wite
SPAREO NV see below Section 3.8.12 read/ wite
SPAREL1 NV undefi ned Section 3.8.12 read/ wite
TEXTUREO _ARB CT0 Figure E. 2 read/ wite
TEXTURE1_ARB CT1 Figure E. 2 read/ wite
TEXTURE<i >_ARB CT<i > Figure E. 2 read/ wite

The regi ster set of COVBI NERO_NV, the first conbi ner stage,
is initialized as described in table NV_register_conbiners. 1.

The initial value of the al pha portion of register SECONDARY _COLOR NV
is undefined. The initial value of the al pha portion of register
SPAREO NV is the al pha conponent of texture O if texturing is

enabl ed for texture 0; however, the initial value of the RGB portion
SPAREO NV is undefined. The initial value of the SPAREL_NV register
is undefined. The initial of registers TEXTUREO ARB, TEXTURELl ARB,
and TEXTURE<i > ARB are undefined if texturing is not enabled for
textures 0, 1, and <i>, respectively.

3.8.12.1 Conbiner Paranmeters

Conbi ner paranmeters are specified by
Conbi ner Par anet er f vNV(GLenum pnane, const G.fl oat *parans);
Conbi ner Par anet eri vNV(GLenum pnane, const GLint *parans);
Conbi ner Par anet er f N\V(GL.enum pnane, GLfloat paran);
Conbi ner Par anet eri NV(GL.enum pnane, GLint param;

<pname> is a synbolic constant indicating which paraneter is to be

204

NVIDIA OpenGL Extension Specifications NV_register_combiners

set as described in the table NV_register_conbiners. 2:

[Table NV_register_conbiners.2]

Nurnber
Par anet er Nane of val ues Type
cccO CONSTANT _COLORO_NV 4 col or
cccl CONSTANT_COLOR1_NV 4 col or
ngc NUM_GENERAL _COMBI NERS NV 1 positive integer
csc COLOR_SUM CLAMP_NV 1 bool ean

<params> is a pointer to a group of values to which to set the

i ndi cated paraneter. <param> is sinply the indicated paraneter

The nunber of val ues pointed to depends on the paraneter being

set as shown in the table above. Color paraneters specified with
Conbi ner Par aneter*NV are converted to floating-point values (if
specified as integers) as indicated by Table 2.6 for signed integers.
The floating-point color values are then clanmped to the range [0, 1].

The val ues cccO and cccl naned by CONSTANT COLORO_NV and
CONSTANT_COLOR1_NV are constant colors available for inputs to the
conbi ner stages. The value ngc nanmed by NUM GENERAL COMBI NERS NV

is a positive integer indicating how many general conbiner stages are
active, that is, how many general conbiner stages a fragnment should
be processed by. Setting ngc to a value |ess than one or

greater than the val ue of MAX GENERAL_COVBI NERS NV generates an

| N\VALI D VALUE error. The value csc naned by COLOR _SUM CLAMP_NV

is a bool ean described in section 3.8.12.3.

3.8.12.2 General Conbiner Stage Operation
The command

Conbi ner | nput NV(GLenum st age,
GLenum porti on,
GLenum vari abl e,
GLenum i nput,
GLenum mappi ng,
GLenum conponent Usage) ;

controls the assignnent of all the general conbiner input variables.
For the RGB conbi ner portion, these are Argb, Brgb, Crgb, and
Drgb; and for the conbi ner al pha portion, these are Aa, Ba, Ca,
and Da. The <stage> paraneter is a synbolic constant of the form
COMBI NER<i > NV, indicating that general conbiner stage <i> is to
be updated. The constant COVBI NER<i > NV = COVBI NERO_NV + <i >
where <i> is in the range 0 to <k>-1 and <k> is the inplenmentation
dependent val ue of MAX COMBI NERS NV. The <portion> paraneter

may be either RGB or ALPHA and determ nes whet her the RGB col or
vector or al pha scalar portion of the specified conbiner stage is
updated. The <vari abl e> paranmeter nmay be one of VAR ABLE A NV,
VARI ABLE B NV, VARI ABLE C NV, or VARIABLE D NV and det erm nes

whi ch respective variable of the specified conbiner stage and
conbi ner stage portion is updated.

The <input>, <mapping> and <conponent Usage> paraneters specify
the assignment of a value for the input variable indicated by

205

‘Arelalidold vIAQIAN

'666T ‘Uoirelodiod VIAIAN WbuAdoD

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_register_combiners NVIDIA OpenGL Extension Specifications

<stage>, <portion>, and <variable> The <input> paranmeter may be
one of the register nanes fromtable NV _register_conbiners. 1.

The <conponent Usage> paraneter may be one of RGB, ALPHA, or BLUE.

When the <portion> paraneter is RGB, a <conponent Usage> par anet er

of RGB indicates that the RGB portion of the indicated register

shoul d be assigned to the RGB portion of the conbiner input variable,
whi | e an ALPHA <conponent Usage> paraneter indicates that the

al pha portion of the indicated register should be replicated across
the RGB portion of the conbiner input variable.

Wien the <portion> parameter is ALPHA, the <conponent Usage>
paranmeter of ALPHA indicates that the al pha portion of the indicated
regi ster should be assigned to the al pha portion of the conbiner

i nput variable, while a BLUE <conponent Usage> par aneter indicates
that the blue conponent of the indicated register should be assigned
to the al pha portion of the conbiner input variable.

When the <portion> paraneter is ALPHA, a <conponent Usage> par aneter
of RGB generates an | NVALI D OPERATION error. Wen the <portion>
paraneter is RGB, a <conponent Usage> paraneter of BLUE generates
an | NVALI D_OPERATI ON error.

When the <portion> paraneter is ALPHA, an <input> parameter of FOG
generates an | NVALI D OPERATION error. The al pha conponent of the
fog register is only available in the final conbiner. The alpha
conponent of the fog register is the fragnent’'s fog factor when
fog is enabl ed; otherw se, the al pha conmponent of the fog register
i's one.

Before the value in the register named by <input> is assigned to the
specified i nput variable, a range mapping is perforned based on
<mappi ng>. The mappi ng may be one of the tokens fromthe table
NV_regi ster _conbi ners. 3.

[Table NV_register_conbiners.3]

Mappi ng Nane Mappi ng Function

UNSI GNED_| DENTI TY_NV max(0.0, e)

UNSI GNED_| NVERT_NV 1.0 - min(max(e, 0.0), 1.0)
EXPAND_NORMAL NV 2.0 * max(0.0, e) - 1.0
EXPAND_NEGATE_NV -2.0 * max(0.0, e) + 1.0
HALF_BI AS_NORMAL NV max(0.0, e) - 0.5

HALF_BI AS_NEGATE_NV -max(0.0, e) + 0.5

S| GNED_| DENTI TY_NV e

S| GNED_NEGATE_NV -e

Based on the <mmppi ng> paraneter, the mapping function in the table
above is evaluated for each el enent <e> of the input vector before
assigning the result to the specified input variable. Note that
the mapping for the RGB and al pha portion of each input variable

is distinct.

Each general conbi ner stage conputes the follow ng ten expressions
based on the values assigned to the variables Argb, Brgb, Crgb,

206

NVIDIA OpenGL Extension Specifications

Drgb, Aa, Ba, Ca, and Da as determ ned by the conbiner state set
by Conbi ner | nput NV.

["gcc" stands for general conbiner conputation.]

gcclrgb [Argb[r]*Brgb[r], Argb[g]*Brgb[g], Argb[b]*Brgb[b]]

[Argb[r]*Brgb[r] + Argb[g]*Brgb[g] + Argb[b]*Brgb[b],
Argb[r]*Brgb[r] + Argb[g]*Brgb[g] + Argb[b]*Brgb[b],
Argb[r]*Brgb[r] + Argb[g]*Brgb[g] + Argb[b]*Brgb[b]]

gcec2rgb

gcc3rgb = [Crgb[r]*Drgb[r], Crgb[g]*Drgb[g], Crgb[b]*Drgb[b]]

gcc4rgb = [Crgb[r]*Drgb[r] + Crgb[g]*Drgb[g] + Crgb[b]*Drgb[b],
Crgb[r]*Drgb[r] + Crgb[g]*Drgb[g] Crgb[b] *Drgb[b] ,
Crgb[r]*Drgb[r] + Crgb[g]*Drgb[g] Crgb[b] *Drgb[b] 1]

+ +

gcec5rgb = gececlrgb + gecc3rgb

gccérgb = gcclrgb or gcc3rgb [see bel ow]
gccla = Aa * Ba

gccla = Ca * Da

gcc3a = gccla + gcc2a

gccda = gccla or gccla [see bel ow]

The conputation of gccérgb and gcc4a involves a special "or"
operation. This operation evaluates to the right-hand operand if the
al pha conmponent of the conbiner’s SPAREO NV register is |less than
0.5; otherw se, the operation evaluates to the |eft-hand operand.

The command

Conbi ner Qut put NV(GLenum st age,
GLenum porti on,
GLenum abQut put
GLenum cdCQut put ,
GLenum sunmQut put ,
GLenum scal e,
GLenum bi as,
GLbool ean abDot Product,
GLbool ean cdDot Product,
GLbool ean nmuxSunj;

controls the general conbiner output operation including designating
the register set |ocations where results of the general conbiner’s
three conputations are witten. The <stage> and <portion>
paraneters take the same val ues as the respective paraneters for
Combi ner | nput NV.

If the <portion> paraneter is ALPHA, specifying a non-FALSE val ue

for either of the paranmeters <abDot Product> or <cdDot Product >,
generates an | NVALI D_VALUE error.

207

NV_register_combiners

‘Arelalidold vIAQIAN

'666T ‘Uoirelodiod VIAIAN WbuAdoD

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_register_combiners NVIDIA OpenGL Extension Specifications

I f the <abDot Product > or <cdDot Product> paraneter is non- FALSE
the val ue of the <sumQutput> paranmeter nust be G._DI SCARD NV,
ot herw se, generate an | NVALI D _OPERATI ON error

The <scal e> paraneter nust be one of NONE, SCALE BY TWO NV,
SCALE BY FOUR NV, or SCALE BY ONE HALF NV and specifies the

val ue of the conbiner stage’'s portion scale, either cscalergb or
cscal ea dependi ng on the <portion> paraneter, to 1.0, 2.0, 4.0,
or 0.5, respectively.

The <bi as> paranmeter nust be either NONE or

Bl AS BY NEGATI VE_ONE_HALF NV and specifies the value of the

conmbi ner stage’s portion bias, either chiasrgb or cbhiasa depending

on the <portion> paraneter, to 0.0 or -0.5, respectively. |If <scale>
is either SCALE BY ONE HALF NV or SCALE BY FOUR NV, a <bi as> of

Bl AS_BY_NEGATI VE_ONE_HALF_NV generates an | NVALI D_OPERATI ON error.

I f the <abDot Product> paraneter is FALSE, then

if <portion> is RGB, out 1rgb
if <portion> is ALPHA, out la

max(m n(gcclrgb + chiasrgb) * cscalergb, 1), -1)
max(mn((gccla + chiasa) * cscalea, 1), -1)

ot herwi se <portion> nust be RGB and
out Irgb = max(m n((gcc2rgh + chiasrgb) * cscalergb, 1), -1)
I f the <cdDot Product> paraneter is FALSE, then

if <portion> is RGB, out 2rgb
if <portion> is ALPHA, out 2a

max(mn((gcc3rgb + chiasrgb) * cscalergb, 1), -1)
max(mn((gcc2a + chiasa) * cscalea, 1), -1)

ot herwi se <portion> nust be RGB so
out 2rgh = max(m n((gcc4rgb + chiasrgb) * cscalergb, 1), -1)

I f the <nuxSun» paraneter is FALSE, then

if <portion> is RGB, out 3rgh = max(m n((gccbrgb + chiasrgb) * cscalergb, 1), -1)
if <portion> is ALPHA out3a = max(mn((gcc3a + chiasa) * cscalea, 1), -1)

ot herw se
if <portion> is RGB, out3rgh = max(m n((gcc6rgb + chiasrgb) * cscalergb, 1), -1)
if <portion> is ALPHA out3a = max(mn((gccda + chiasa) * cscalea, 1), -1)

out 1rgb, out2rgb, and out3rgb are witten to the RG portion of

conbi ner stage's registers named by <abQutput>, <cdQutput>, and
<sumQut put > respectively. outla, out2a, and out3a are witten to
the al pha portion of conbiner stage’'s registers named by <abQut put >,
<cdCQut put >, and <sunQut put> respectively. The paraneters <abQut put >,
<cdCQut put >, and <sumQut put> nust be either DI SCARD NV or one of

the register names fromtable NV_regi ster_conbiners.1 that has an out put
status of read/wite. |If an output is set to D SCARD NV, that

output is not witten to any register. The error | NVALI D OPERATI ON
is generated if <abQutput>, <cdQutput>, and <sunfQutput> do not al
nanme uni que regi ster nanmes (though multiple outputs to D SCARD NV
are legal).

When the general conbiner stage's register set is witten based on
the conputed outputs, the updated register set is copied to the
regi ster set of the subsequent conbi ner stage in the conbiner
sequence. Copi ed undefined values are |ikew se undefi ned.

208

NVIDIA OpenGL Extension Specifications NV_register_combiners

The subsequent conbi ner stage following the | ast active general
conbi ner stage, indicated by the general conbiner stage’'s nunber
being equal to ngc-1, in the sequence is the final comnbiner
stage. In other words, the nunber of general conbiner stages
each fragnent is transforned by is deternm ned by the val ue of
NUM_GENERAL_COVBI NERS_NV.

3.8.12.3 Final Conbiner Stage Operation

The final conbiner stage operates differently fromthe general

conbi ner stages. Wile a general conbiner stage updates its register
set and passes the register set to the next conbiner stage, the fina
conmbi ner outputs an RGBA color fcoc, the final conbiner output color
The final conbiner stage is capable of applying the standard OpenGL
color sum and fog operations, but has the configurability to be

used for other purposes.

The conmmand

Fi nal Conbi ner | nput NV(GL.enum vari abl e,
GLenum i nput,
GLenum nappi ng,
GLenum conponent Usage) ;

controls the assignnent of all the final combiner input variables.
The variables A, B, C, D, E, and F are RG vectors. The variable
G is an al pha scalar. The <variable> paraneter may be one of

VARI ABLE_A NV, VARI ABLE_B NV, VARI ABLE_C NV, VARI ABLE D NV,

VARI ABLE_E_NV, VARI ABLE_F_NV, and VARI ABLE_G NV, and deterni nes
whi ch respective variable of the final conbiner stage is updated.

The <input>, <mapping> and <conponent Usage> paraneters specify
the assignment of a value for the input variable indicated by
<vari abl e>.

The <input> paraneter may be any one of the register names from
table NV_register_conbiners.1 or be one of two pseudo-register
nanes, either E TIMES F NV or SPAREO PLUS SECONDARY_COLOR_NV.
The value of E TIMES F NV is the product of the val ue of
variable E tines the value of variable F. The val ue of
SPAREO_PLUS_SECONDARY_COLOR_NV is the val ue the SPAREO_NV

regi ster mapped using the UNSI GNED | DENI TY_NV i nput nmapping pl us
the val ue of the SECONDARY_CCLOR_NV register mapped using the
UNSI GNED | DENTI TY_NV i nput mapping. |If csc, the color sum cl anp,
i s non-FALSE, the val ue of SPAREO PLUS SECONDARY COLOR NV is first
clanped to the range [0,1]. The al pha conponent of E TIMES F NV
and SPAREO_PLUS SECONDARY_COLOR NV is al ways zero.

When <vari able> is one of VARI ABLE E NV, VARI ABLE F _Nv,

or VARIABLE G NV and <input> is either E TIMES F NV or
SPAREO_PLUS_SECONDARY_COLOR_NV, generate an | NVALI D_OPERATI ON
error. Wen <variable> is VARIABLE A NV and <input> is
SPAREO_PLUS SECONDARY_COLOR_NV, generate an | NVALI D_OPERATI ON
error.

The <conponent Usage> paraneter nmay be one of RGB, BLUE, ALPHA
(with certain restrictions depending on the <variable> and <input>

209

‘Arelalidold vIAQIAN

'666T ‘Uoirelodiod VIAIAN WbuAdoD

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_register_combiners NVIDIA OpenGL Extension Specifications

as descri bed bel ow).

When the <variabl e> paraneter is not VARIABLE G NV, a

<conponent Usage> paraneter of RGEB indicates that the RG portion of
the indicated register should be assigned to the RGB portion of the
conbi ner input variable, while an ALPHA <conponent Usage> par anet er

i ndi cates that the al pha portion of the indicated register should
be replicated across the RG portion of the conbiner input variable.

When the <variabl e> paraneter is VAR ABLE G NV, a <conponent Usage>
paraneter of ALPHA indicates that the al pha conponent of the

i ndi cated register should be assigned to the al pha portion of the

G input variable, while a BLUE <conponent Usage> par aneter indicates
that the blue conponent of the indicated register should be assigned
to the al pha portion of the G input variable.

The | NVALI D_OPERATI ON error is generated when <conponent Usage> is
BLUE and <variable> is not VAR ABLE G NV. The | NVALI D_OPERATI ON
error is generated when <conponent Usage> is RG and <vari abl e>

is VAR ABLE G NV

The | NVALI D_OPERATI ON error is generated when both the <input>
paraneter is either E TIMES F NV or SPAREO_PLUS SECONDARY_COLOR NV
and the <conponent Usage> paranmeter is ALPHA or BLUE

Before the value in the register naned by <input> is assigned to
the specified input variable, a range mapping is performed based
on <mappi ng>. The mappi ng may be either UNSI GNED | DENTI TY_NV

or UNSI GNED | NVERT_NV and operates as specified in table
NV_regi ster _conbi ners. 3.

The final conbiner stage conputes the followi ng expressi on based
on the values assigned to the variables A, B, C, D, E, F, and G as
determ ned by the conbiner state set by Final Conbi nerl nput NV

fcoc = [mn(ab[r] + iac[r] + Dr], 1.0),
mn(ab[g] + iac[g] + Dg], 1.0),
mn(ab[b] + iac[b] + OJb], 1.0),
G]
wher e
ab =[Alr]*B[r], Alg]*B[g], Alb]*B[b]]
itac =[(LO-A[r])*Cr], (1.0 - Alg])*Cg], (1.0 - Alb])*Cb]]

3.8.12.4 Required State

The state required for the register conbiners is a bit indicating
whet her regi ster conbiners are enabled or disabled, an integer

i ndi cati ng how many general conbiners are active, a bit indicating
whet her or not the color sumclanp to 1 should be perforned, two
RGBA constant colors, <n> sets of general conbiner stage state where
<n> is the value of MAX GENERAL_ COMBI NERS NV, and the fina

conbi ner stage state. The per-stage general conbiner state consists
of the RGB input portion state and the al pha i nput portion state.
Each portion (RG and al pha) of the per-stage general conbiner

state consists of: four integers indicating the input register for

210

NVIDIA OpenGL Extension Specifications NV_register_combiners

the four variables A, B, C, and D, four integers to indicate each
variabl e’ s range mapping; four bits to indicate whether to use the
al pha conmponent of the input for each variable; a bit indicating
whet her the AB dot product should be output; a bit indicating

whet her the CD dot product should be output; a bit indicating

whet her the sum or nux output should be output; two integers to
mai ntain the output scale and bias enunerants; three integers to
mai ntain the output register set names. The final conbiner stage
state consists of seven integers to indicate the input register
for the seven variables A, B, C, D, E, F, and G seven integers to
i ndi cate each variable's range mappi ng; and seven bits to indicate
whet her to use the al pha conponent of the input for each variable.

The general conbiner per-stage state is initialized as described
in tabl e NV_regi ster_conbiners. 4.

[Table NV_register_conbiners.4] EE
Conponent)

Portion Vari abl e I nput Usage Mappi ng :[—>
RGB A PRI MARY_COLOR_NV RGB UNSI GNED_| DENTI TY_NV me)
RGB B TEXTURE#_ARB RGB UNSI GNED_| DENTI TY_NV 8
RGB C ZERO RGB UNSI GNED_| DENTI TY_NV S
RGB D ZERO RGB UNSI GNED_| DENTI TY_NV =,
al pha A PRI MARY_COLOR_NV ALPHA UNSI GNED_| DENTI TY_NV D
al pha B TEXTURE#_ARB ALPHA UNSI GNED_| DENTI TY_NV Q"_)"
al pha C ZERO ALPHA UNSI GNED _| DENTI TY_NV -
al pha D ZERO ALPHA UNSI GNED_| DENTI TY_NV <

where # is the general conbiner stage nunber.

The final conbiner stage state is initialized as described in table
NV_regi ster _conbi ners. 5.

[Table NV_register_conbiners.5]

'666T ‘Uoirelodiod VIAIAN WbuAdoD

Component

Vari abl e | nput Usage Mappi ng

A FOG ALPHA UNSI GNED _| DENTI TY_NV
B SPAREO_PLUS_SECONDARY_COLOR_NV RGB UNSI GNED _| DENTI TY_NV
C FOG RGB UNSI GNED _| DENTI TY_NV
D ZERO RGB UNSI GNED _| DENTI TY_NV
E ZERO RGB UNSI GNED _| DENTI TY_NV
F ZERO RGB UNSI GNED _| DENTI TY_NV
G SPAREO_NV ALPHA UNSI GNED_| DENTI TY_NV'

-- NEWSection 3.8.11 "Antialiasing Application”
Insert the follow ng paragraph BEFORE t he section’s first paragraph

"Regi ster conbiners are enabl ed or disabled using the generic Enable
and Di sabl e cormmands, respectively, with the synbolic constant

REQ STER COMBI NERS_NV. If the register conbiners are enabled (and not
in color index node), the fragnent’s color value is replaced with fcoc,
the final combiner output color, conmputed in section 3.8.12; otherw se,
the fragment’s color value is the result of the fog application

in section 3.10."

211

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_register_combiners NVIDIA OpenGL Extension Specifications

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Frane Buffer)

None
Additions to Chapter 5 of the 1.2 Specification (Special Functions)

None
Additions to Chapter 6 of the 1.2 Specification (State and State Requests)
-- Section 6.1.3 "Enunerated Queries"

Change the first two sentences (page 182) to say:

"Ot her commands exist to obtain state variables that are identified by
a category (clip plane, light, material, conbiners, etc.) as well as
a synbolic constant. These are"

Add to the bottomof the list of function prototypes (page 183):

voi d Get Conmbi ner | nput Par anet er f vNV(GLenum st age, GLenum porti on,
GLenum vari abl e,
GLenum pnanme, const G.float *parans);
voi d Get Conbi ner | nput Par anet eri vNV(GLenum st age, GLenum portion,
GLenum vari abl e,
GLenum pnane, const G.int *parans);
voi d Get Conbi ner Qut put Par anet er f vyNV(GLenum st age, GLenum porti on,
GLenum pnane, const G.float *parans);
voi d Get Conbi ner Qut put Par anet eri vNV(GLenum st age, G.enum porti on,
GLenum pnane, GLint *parans);
voi d CGet Fi nal Conbi ner | nput Par anet er f vNV(GL.enum vari abl e, G_enum pnane,
const GLfloat *parans);
voi d Get Fi nal Conbi ner | nput Par anet eri vNV(G.enum vari abl e, G.enum pnane,
const GLfloat *parans);

Add the follow ng paragraph to the end of the section (page 184):

"The Get Conbi ner| nput Par anet er f vV,

Get Conbi ner | nput Par anet eri vNV, Get Conbi ner Qut put Par anet er f vV,

and Get Conbi ner Qut put Par anet eri vNV par anet er <stage> may be one of
COMBI NERO_NvV, COMBI NER1_NV, and so on, indicating which general
conbi ner stage to query. The Get Conbi nerl nput Par anet er f vV,

Get Conbi ner | nput Par anet eri vNV, Get Conbi ner Qut put Par anet er f vV,

and Get Conbi ner Qut put Par anet eri vNV paraneter <portion> may be
either RGB or ALPHA, indicating which portion of the general

conbi ner stage to query. The Get Conbi nerl nput Paranet er f vV

and Get Conbi ner | nput Paranet eri vNV par aneter <vari abl e> may

be one of VARI ABLE_A NV, VAR ABLE B NV, VARI ABLE_C NV,

or VARI ABLE D NV, indicating which variable of the general

conbi ner stage to query. The GCetFi nal Conbi ner | nput Par anet er f vV
and GCet Fi nal Conbi ner | nput Par anmet eri vNV par anet er <vari abl e> nay be one
of VARI ABLE_A NV, VARI ABLE_B NV, VARI ABLE C NV, VARI ABLE_D Nv,
VARI ABLE_E_NV, VARI ABLE F_NV, or VARI ABLE_G NvV."

212

NVIDIA OpenGL Extension Specifications

Additions to the G.X Specification

None.

GLX Prot ocol

Thirteen new GL commuands are added.

NV_register_combiners

The foll owi ng seven rendering commands are sent to the sever as part
of a gl XRender request:

Conbi ner Par anet er f NV

2

2
4
4

12

4136
ENUM
FLOAT32

Conbi ner Par anet er f vNV

2
2
4

4*n

8+4*n
4137
ENUM
0x852A
0x852B
0x854E
0x854F
el se
LI STof FLOAT

TOnT T
WORrRrEFEA~ADN

2

Conbi ner Par anet eri NV

2

2
4
4

12

4138
ENUM
I NT32

Conbi ner Par anet eri vNV

2
2
4

4*n

Conbi ner | nput NV

ARBRARNDNON

8+4*n
4139
ENUM
0x852A n
0x852B n
Ox854E n
0x854F n
n
3

TR
OrRr P AN

el se
Ll STof | NT32

28
4140
ENUM
ENUM
ENUM
ENUM
ENUM
ENUM

rendering conmand | ength
renderi ng comand opcode
pnane
param

renderi ng command | ength
renderi ng comand opcode
pnane

GL_CONSANT_COLORO_NV
GL_CONSANT_COLOR1_NV
GL_NUM_GENERAL _COWVBI NERS_NV
GL_COLOR_SUM CLANMP_NV

par ams

renderi ng command | ength
renderi ng comand opcode
pnane
param

renderi ng command | ength
renderi ng conmand opcode
pnane

GL_CONSANT_COLORO_NV
GL_CONSANT_COLORL_NV
GL_NUM_GENERAL_COWVBI NERS_NV
GL_COLOR_SUM CLAMP_NV

par ams

rendering conmand | ength
renderi ng conmand opcode
st age

portion

vari abl e

i nput

mappi ng

conponent Usage

213

‘Arelalidold vIAQIAN

'666T ‘Uoirelodiod VIAIAN WbuAdoD

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_register_combiners NVIDIA OpenGL Extension Specifications

Conbi ner Qut put NV

2 36 rendering command | ength
2 4141 rendering command opcode
4 ENUM st age
4 ENUM portion
4 ENUM abQut put
4 ENUM cdQut put
4 ENUM sunmCut put
4 ENUM scal e
4 ENUM bi as
1 BOCL abDot Pr oduct
1 BOOL cdDot Pr oduct
1 BOOL muxSsSum
1 BOCL unused
Fi nal Combi ner Qut put NV
2 20 rendering command | ength
2 4142 rendering command opcode
4 ENUM vari abl e
4 ENUM i nput
4 ENUM mappi ng
4 ENUM conponent Usage

The remai ni ng si x conmands are non-rendering comrands. These comuands
are sent separately (i.e., not as part of a gl XRender or gl XRender Lar ge
request), using the gl XVendorPrivateWthReply request:

Get Conbi ner | nput Par anet er f vNV

1 CARD8 opcode (X assi gned)
1 17 GLX opcode (gl XVendor Pri vat eW t hRepl y)
2 7 request length
4 1270 vendor specific opcode
4 GLX_CONTEXT_TAG cont ext tag
4 ENUM st age
4 ENUM portion
4 ENUM vari abl e
4 ENUM pnane
=>
1 1 reply
1 unused
2 CARD16 sequence numnber
4 m reply length, m= (n==1? 0 : n)
4 unused
4 CARD32 unused

if (n=1) this follows:

4 FLOAT32 par ans
12 unused

otherwi se this foll ows:

16 unused
n*4 LI STof FLOAT32 par ams

214

NVIDIA OpenGL Extension Specifications

Get Conbi ner | nput Par anet eri vNV
CARD8

17

7

1271
GLX_CONTEXT_TAG
ENUM

ENUM

ENUM

ENUM

ARAARNANPRP

1

CARD16
m

A BABANEFLBE

CARD32
if (n=1) this follows:

4 | NT32
12

otherwi se this foll ows:

16
n*4 LI STof | NT32

Get Conbi ner Qut put Par anet er f vNV
CARD8

17

6

1272
GLX_CONTEXT_TAG
ENUM

ENUM

ENUM

ArBAADMDNPRPPR

1

CARD16
m

ABRABANRPPF

CARD32
if (n=1) this follows:

4 FLOAT32
12

otherwi se this foll ows:

16
n*4 LI STof FLOAT32

NV_register_combiners

opcode (X assi gned)

GLX opcode (gl XVendor Pri vat eW t hRepl y)
request length

vendor specific opcode

context tag

st age

portion

vari abl e

pnane

reply

unused

sequence numnber

reply length, m= (n==1? 0 : n)
unused

unused

par ans
unused

unused
par ans

opcode (X assi gned)

GLX opcode (gl XVendor Pri vat eW t hRepl y)
request |ength

vendor specific opcode

context tag

st age

portion

pnane

reply

unused

sequence numnber

reply length, m= (n==1? 0 : n)
unused

unused

par ans
unused

unused
par ans

215

‘Arejanndold vIAQIAN

'666T ‘uoneiodio)d vIAIAN ybuAdoD

NV_register_combiners

Get Conbi ner Qut put Par anet eri vV
CARD8

17

6

1273
GLX_CONTEXT_TAG
ENUM

ENUM

ENUM

ArDBAADANPERPR

1

CARD16
m

A BRABANEFLPF

CARD32
if (n=1) this foll ows:

4 I NT32
12

otherwi se this foll ows:

if (n=1) this follows:

4 FLOAT32
12

otherwi se this foll ows:

16
n*4 LI STof FLOAT32

NVIDIA OpenGL Extension Specifications

opcode (X assi gned)

GLX opcode (gl XVendor Pri vat eW t hRepl y)
request length

vendor specific opcode

context tag

st age

portion

pnane

reply

unused

sequence numrber

reply length, m= (n==1? 0 : n)
unused

unused

par ans
unused

unused
par ans

opcode (X assi gned)

GLX opcode (gl XVendor Pri vat eW t hRepl y)
request length

vendor specific opcode

context tag

vari abl e

pnane

reply

unused

sequence numnber

reply length, m= (n==1? 0 : n)
unused

unused

o)
(o))
(o))
—i
-
O
-
©
S
16
%? n*4 LI STof | NT32
O 25 Get Fi nal Conbi ner | nput Par anet er f vNV
< s 1 CARDS
09 ; y
~ =
> o 4 1274
Z O 4 GLX_CONTEXT_TAG
ca 4 ENUM
oK B 4 ENUM
YA =
&8 1 1
o > 1
Oz 2 CARD16
4 m
4
4 CARD32

par ans
unused

unused
par ans

216

NVIDIA OpenGL Extension Specifications NV_register_combiners

Get Fi nal Conbi ner | nput Par anet eri vNV

1 CARD8 opcode (X assi gned)
1 17 GLX opcode (gl XVendor Pri vat eW t hRepl y)
2 5 request length
4 1275 vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 ENUM vari abl e
4 ENUM pname
=>
1 1 reply
1 unused
2 CARD16 sequence numrber
4 m reply length, m= (n==1 ? 0 : n)
4 unused
4 CARD32 unused

if (n=1) this foll ows:

4 | NT32 par ans
12 unused

otherwi se this foll ows:

16 unused
n* 4 LI STof I NT32 par ams

Errors

| NVALI D_VALUE is generated when Conbi ner Paranet er f vNV

or Conbi nerParanmeterivNvV is called with <pnanme> set to
NUM_GENERAL _COMBI NERS and the val ue pointed to by <parans>
is less than one or greater or equal to the val ue of
MAX_GENERAL_COVBI NERS_NV.

| NVALI D_OPERATI ON i s generated when Conbi nerlnputNV is called
wi th a <conponent Usage> paraneter of RG and a <portion> paraneter
of ALPHA

| NVALI D_OPERATI ON i s generated when Conbi nerlnputNV is called
wi th a <conponent Usage> paraneter of BLUE and a <portion> paraneter
of RGB.

| NVALI D_OPERATI ON i s generated Wien ConbinerlnputNV is called with a
<conponent Usage> paraneter of ALPHA and an <i nput> paranmeter of FOG

| N\VALI D VALUE i s generated when Conbi nerQutputNV is called with
a <portion> parameter of ALPHA, but a non-FALSE val ue for either
of the paraneters <abDot Product> or <cdDot Product >.

| NVALI D_OPERATI ON i s generated when ConbinerQutputNV is called with
a <scal e> of either SCALE BY TWO NV or SCALE BY FOUR NV and a
<bi as> of BI AS_BY_NEGATI VE_ONE_HALF_NV.

| NVALI D_OPERATI ON i s generated when Conbi nerQut putNV is called such

that <abQut put>, <cdQutput>, and <sunQutput> do not all nanme uni que
regi ster names (though nultiple outputs to DISCARD NV are |egal).

217

‘Arelalidold vIAQIAN

'666T ‘Uoirelodiod VIAIAN WbuAdoD

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_register_combiners NVIDIA OpenGL Extension Specifications

| NVALI D_OPERATI ON i s generat ed when Fi nal Conbi ner Qut put NV
is called where <variable> is one of VAR ABLE E Nv,

VARI ABLE_F_NV, or VAR ABLE G NV and <input> is E_TIMES F NV
or SPAREO_PLUS_SECONDARY_COLOR_NV.

| NVALI D_OPERATI ON i s generat ed when Fi nal Conbi ner Qut put NV
is called where <variable> is VARIABLE A NV and <input> is
SPAREO_PLUS_ SECONDARY_COLOR_NV.

| NVALI D_OPERATI ON i s generated when Fi nal Conbi nerlnputNV is called
with VARIABLE G NV for <variabl e> and RGB for <conponent Usage>.

| NVALI D_OPERATI ON i s generated when Fi nal Conbi nerl nputNV is called
with a value other than VARIABLE G NV for <variabl e> and BLUE for
<conponent Usage>.

| NVALI D_OPERATI ON i s generated when Fi nal Conbi nerlnputNV is

call ed where the <input> paranmeter is either E TIMES F_NV or
SPAREO PLUS SECONDARY _COLOR NV and the <conponent Usage> par anet er
is ALPHA.

| NVALI D_OPERATI ON i s generated when Conbi nerQutputNV is called with

ei t her <abDot Product > or <cdDot Product > assi gned non- FALSE and
<sunmQut put> is not GL_DI SCARD NV.

218

NVIDIA OpenGL Extension Specifications

New St at e

-- (NEWtable 6.29,

REG STER GOMB NERS N/

texturel enabl e

NLM GENERAL. GOMB NERS NV

QR SMAAP N/

QONSTANT QG0N
QONSTANT CQCRL N/

QMBI NER | NFUT_ NV

after

C
C

Z8xHx2x4

CGOMB NER GOMPONENT_LBACE NV Z3x#x2x4

QM NER MFAL NG NV
QOMB NER AB DOT_PROOLCT NV
QOMB NER (D DOT_PROOLCT NV

QM NER MK SIMNV

QM NR SALE NV
QM NRR B AS N/

GOV NER AB QUTRUT N/
QOMB NER (D QUTRUT NV

GOMB NER SIMQUTPUT NV

QMBI NER | NPUT_ NV

QOMB NER MFRL NG NV

QOMB NER GOMPONENT LBACE NV

Z8xHx2x4

Bx#x2

27

p217)

GtHoatv

GtHoatv

Get Gontoi ner | nput Par anet er * NV
Get Gontoi ner | nput Par anet er *NV
Get Gontoi ner | nput Par anet er *NV
Get Gontoi ner Qut put Par anet er *NV
Get Gontoi ner Qut put Par anet er *NV
Get Gontoi ner Qut put Par anet er *NV
Get Gontoi ner Qut putt Par anet er *NV
Get Gontoi ner Qut put Par anet er *NV
Get Gontoi ner Qut putt Par anet er *NV
Get Gontoi ner Qut put Par anet er *NV

Get Gontoi ner Qut put Par anet er *NV

Get A nal Gontoi ner | nput Paranet er*NV see 3.8.12.4

Get F nal Gonfoi ner | nput Paranget er *NV - UNS G\ED | CBENT TY_NV

Get A nal Gontoi ner | nput Par anet er *NV see 3.8.12.4

[where # is the value of MAX GENERAL COVBI NERS NV]

New | mpl ement ati on Dependent State

(table 6.24, p214) add the follow ng entry:

MAX_GENERAL_COMVBI NERS NV Z+

Type

GetIntegerv 2

NVIDI A | npl enentation Details

The effective range of the RGB portion of the final
if the color sumclanp is fal se.

be [0, 4]

CGet Command M ni mum Val ue

Exer ci si ng

NV_register_combiners

this range

requi res assigni ng SPAREO_PLUS_SECONDARY_COLOR NV to the D variable

and either

B or C or

both B and C.

unli kely configuration.

However due to a bug in the GeForce 256 and Quadro hardwar e,
generated above 2 in the RGB portion of the final
conput ed incorrectly.

In practice this is a very

val ues

conmbi ner will be

GeForce2 GTS and subsequent NVID A GPUs have

219

Initia Vaue Descri ption Sec Atribute
Fal se register 3.811
conbi ners enabl e
1 nunber of active 3.8.12.1 texture
confi ner st ages
True vhet her or not 3.812.1 texture
SPARD RS
SEONDARY_
CAR NV cl anps
confi ner st ages
0,0,0,0 coni ner constant 3.8.12.1 texture
col or zero
0,0,0,0 confi ner constant 3.8.12.1 texture
col or one
see 3.8.12.4 confoi ner i nput 3.8.12.2 texture e
variabl es <
see 3.8.12.4 use al pha for 3.8.122 texture —_—
conbi ner i nput U
UNS G\ED | CENN TY_NV - conpl enent 3.8.12.2 texture —_—
contoi ner i nput >
Fal se out put AB dot 3.812.3 texture
pr oduct U
Fal se out put (D dot 3.812.3 texture =
product @)
Fal se out put nux sum 3.8.12.3 texture ©
NO\E output scal e 3.8.12.3 texture —=.
NO\E output bias 3.8.12.3 texture D
O SOFD NV AB out put 3.8.12.3 texture Q"_)*
register =
IS e=\Y] @ out put 3.812.3 texture <
register -
FARD NV sum out put 3.8.12.3 texture
register
final conbi ner 3.812.4 texture
i nput
fina conbi ner 3.8.12.4 texture
i nput nappi ng
use a pha for 3.812.4 texture
final conbi ner
i nput nappi ng
Descri ption Sec Attribute
Maxi mum num of 3.8.12 -
general conbi ner
st ages
conbi ner shoul d

'666T ‘Uoirelodiod VIAIAN WbuAdoD

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_register_combiners NVIDIA OpenGL Extension Specifications

fixed this bug.
Revi si on History

April 4, 2000 - Docunent that al pha conponent of the FOG register
shoul d be zero when fog is disabled. The Release 4 NVIDI A drivers
have a bug where this is not always true (though it often still is).
The bug is fixed in the Release 5 NVIDI A drivers.

June 8, 2000 - The al pha conponent of the FOG register is not
avail able for use until the final conbiner. The specification
previously incorrectly stated:

"I NVALI D_OPERATION i s generated Wien ConbinerlnputNV is called with
a <portion> paraneter of ALPHA and an <i nput> paraneter of FOG "

It is actually the <conponentUsage> (not the <portion>) that should
not be allowed to be ALPHA. The Release 4 NVIDI A drivers inplenented
the above incorrect error check. The Release 5 (and later) NVID A
drivers (after June 8, 2000) have fixed this bug and correctly

i mpl ement the error based on <conmponent Usage>.

The specification previously did not allow BLUE for the

<conponent Usage> of the Gvariable in the final conmbiner. This is
now allowed in the Release 5 (and later) NVIDI A drivers (after June
8, 2000). The Release 4 NVIDIA drivers do not permt BLUE for the
<component Usage> of the G variable and generate an | NVALI D_OPERATI ON
error if this is attenpted. The Release 5 NVIDI A drivers (after June
8, 2000) have fixed this bug and pernit BLUE for the <conponent Usage>
of the G variable.

220

NVIDIA OpenGL Extension Specifications NV_texgen_emboss

NV_t exgen_enboss
Nanme Strings
GL_NV_t exgen_enboss
Noti ce
Copyri ght NVI DI A Corporation, 1999.
| P Status
NVIDI A Proprietary.
Thi s docunent is protected by copyright and contains information
proprietary to NVID A Corporation. The receipt or possession of this
docunent does not convey any express or inplied rights to reproduce,
di sclose, distribute or prepare deivative works its contents or to
manuf acture, use, sell or inport anything that it may describe in
whol e or in part. The docunent is provided as is with no express
or inplied representation or warranty of any kind as the accuracy of
the information, its fitness for a particular purpose or otherw se.
St at us
Shi ppi ng (version 1.0)
Ver si on
NVI DI A Date: July 25, 2000
Nunber
193
Dependenci es

ARB nul titexture.

Witten based on the wording of the Qpen@ 1.2 specification and the
ARB nul titexture extension.

Overvi ew

Thi s extension provides a new texture coordi nate generati on node
suitable for nmultitexture-based enbossing (or bunp mappi ng) effects.

G ven two texture units, this extension generates the texture

coordi nates of a second texture unit (an odd-nunbered texture unit)
as a perturbation of a first texture unit (an even-nunbered texture
unit one less than the second texture unit). The perturbation is
based on the nornmal, tangent, and |light vectors. The nornal vector
is supplied by gl Normal; the light vector is supplied as a direction
vector to a specified OpenG light’'s position; and the tanget

221

‘Arelalidold vIAQIAN

'666T ‘Uoirelodiod VIAIAN WbuAdoD

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_texgen_emboss NVIDIA OpenGL Extension Specifications

vector is supplied by the second texture unit’s current texture
coordinate. The perturbation is also scaled by program supplied
scal i ng constants.

If both texture units are bound to the sane texture representing a
hei ght field, by subtracting the difference between the resulting two
filtered texels, programs can achi eve a per-pixel enbossing effect.

| ssues
Can you do enbossing on any texture unit?

NO. Just odd nunbered units. This meets a constraint of the
proposed hardware inpl enentation, and because enbossing takes two
texture units anyway, it shouldn’t be a real limtation

Can you just enable one coordinate of a texture unit for enbossing?

Yes but NOT REALLY. The texture coordinate generation fornula

is specified such that only when ALL the coordi nates are enabl ed
and are using enbossing, do you get the enbossing conputation.

O herw se, you get undefined val ues for texture coordinates enabl ed
for texture coordinate generation and setup for enbossing.

Does the light specified have to be enabl ed for enmbossing to work?

Yes, currently. But perhaps we could require inplenentations to
enabl e a phantomlight (the Iight colors would be bl ack).

Coul d the enboss constant just be the reciprocal of the width and
hei ght of the texture units texture if that’'s what the progranmmer
will have it be nost of the tine?

NO. Too nmuch work and there nay be reasons for the progranmer to
control this.

penG.’ s base texture environment functionality isn't powerful enough
to do the subtraction needed for enmbossing. Were would you get
power ful enough texture environnent functionality.
Anot her extension. Try NV_register_conbiners.
What is the interpretation of CT?
For the purposes of enbossing, CT should be thought of as the
vertex’'s tangent vector. This tangent vector indicates the direction
on the "surface" where PCTs is not changing and PCTt is increasing.

Are the CT and PCT vari abl es the user-supplied current texture
coordi nat es?

YES. Except when the texture unit’s texture coordi nate eval uator
is enabl ed, then CT and PCT use the respective evaluated texture
coor di nat es

Thi s extension specification's | anguage "Denote as CT the texture
unit’'s current texture coordinates" and "Denote as PCT the previous

222

NVIDIA OpenGL Extension Specifications NV_texgen_emboss

texture unit’s current texture coordinates" refers to the "current
texture coordinates" OpenGL state which is the state specified
via gl TexCoord. Plus the exception for evaluators.

To be explicit, PCT is NOT the result of texgen or the texture
matrix. Likewise, CT is NOT the result of texgen or the

texture matrix. PCT and CT are the respective texture unit’s

eval uated texture coordinate if the vertex is evaluated with
texture coordinate eval uation enabled, otherwise if the vertex is
generated via vertex arrays with the respective texture coordi nate
array enabled, the texture coordinate fromthe texture coordinate
array, otherw se the respective current texture coordinate is used.

New Procedures and Functions
None
New Tokens

Accepted by the <parant paraneters of TexGend, TexGenf, and TexGCeni
when <pname> paraneter i s TEXTURE GEN MODE:

EMBOSS MAP_NV 0x855F
When t he <pnane> paraneter of TexGendv, TexGenfv, and TexGeniv is
TEXTURE_CGEN MODE, then the array <parans> nay al so contain
EMBOSS _MAP_NV.

Accepted by the <pnane> paraneters of Get TexGendv, Get TexGenfyv,
Get TexCGeni v, TexGend, TexGendv, TexGenf, TexGenfv, TexGeni, and

TexCGeni v:
EVMBOSS LI GHT NV 0x855D
EMBOSS CONSTANT_NV Ox855E

Additions to Chapter 2 of the 1.2 Specification (OQpenG Operation)
-- Section 2.10.4 "Generating Texture Coordinates"
Change the last sentence in the 1st paragraph to:

"I f <pname> is TEXTURE_GEN MODE, then either <parans> points to
or <parane» is an integer that is one of the synbolic constants
OBJECT_LI NEAR, EYE_LI NEAR, SPHERE NMAP, or EMBOSS_MAP_NV. "

Add these paragraphs after the 4th paragraph:

"When used with a suitable texture, suitable explicit texture
coordi nates, a suitable (extended) texture environment,

suitable lighting paraneters, and suitabl e enbossing paraneters,
calling TexGen with TEXTURE GEN MODE i ndi cati ng EMBOSS MAP_NV

can sinulate the lighting effect of enbossing on a pol ygon.

The error | NVALI D ENUM occurs when the active texture unit has an
even nunber.

The enboss constant and enboss |ight paraneters for controlling
the EMBOSS MAP_NV node are specified by calling TexGen with pname

223

‘Arelalidold vIAQIAN

'666T ‘Uoirelodiod VIAIAN WbuAdoD

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_texgen_emboss NVIDIA OpenGL Extension Specifications

set to EMBOSS CONSTANT_NV and EMBOSS LI GHT_NV respectively.

When pnane i s EMBOSS CONSTANT_NV, param or what paranms points
tois a scalar value. An error INVALID ENUM occurs if pnane is
EVMBOSS CONSTANT_NV and coord is Ror Q An error |NVALI D ENUM

al so occurs if pnane is EMBOSS CONSTANT_NV and the active texture
unit nunber is even.

When pnane is EMBOSS LI GHT_NV, param or what parans points to is
a synbolic constant of the formLIGHTi, indicating that |ight i
is to have the specified paraneter set. An error |NVALI D ENUM
occurs if pname is EMBOSS LIGHT_NV and coord is Ror Q An error
| NVALI D_ENUM occurs if pname is EMBOSS LI GHT_NV and the active
texture unit nunber is even. An error |NVALID ENUM occurs if
pnane is EMBOSS LIGHT NV and the value i for LIGHTI is negative
or is greater than or equal to the value of MAX LI GHTS.

| f TEXTURE_GEN _MODE i ndi cates EMBOSS MAP_NV, the generation function
for the coordinates S, T, R, and Qis conputed as foll ows.

Denote as L the light direction vector fromthe vertex's eye
position to the position of the Iight specified by the coordinate’s
EMBOSS LI GHT_NV state (the direction vector is conmputed as descri bed
in Section 3.13.1).

Denote as N the current nornmal after transformation to eye
coor di nat es.

Denote as CT the texture unit’s current texture coordinates
transfornmed to eye coordinates by normal transformation (as
described in Section 3.10.3) and nornali zed.

However, if the vertex is evaluated (as described in Section 5.1)
and the texture unit’'s texture coordinate nmap i s enabl ed, use the
texture unit’'s evaluated texture coordinate to conpute CI.

Denote as B the cross product of N and the <s,t,r> vector of CT.

Bx = Ny*CTr - CTt*Nz
By = Nz*CTs - CIr*Nx
Bz = Nx*CTt - CTs*Ny

Denote as BN the normali zed version of the vector B.

BNx = Bx / sqrt(Bx*Bx + By*By + Bz*Bz);
BNy = By / sqrt(Bx*Bx + By*By + Bz*Bz);
BNz = Bz / sqrt(Bx*Bx + By*By + Bz*Bz);

Denote as T the cross product of B and N

Tx = BNy*Nz - Ny*BNz
Ty = BNz*Nx - Nz* BN
Tz = BNXk*Ny - Nx*BNy

Cbserve that BN and T are orthonornal.

Denote as PCT the previous texture unit’'s current texture

224

NVIDIA OpenGL Extension Specifications NV_texgen_emboss

coordinates. If the nunber of the texture unit for the texture
coordi nates being generated is n, then the previous texture unit
is texture unit nunber n-1. Note that n is restricted to be odd.

However, if the vertex is evaluated (as described in Section 5.1)
and the previous texture unit's texture coordinate map i s enabl ed,
use the previous texture unit’s evaluated texture coordinate to
conmput e PCT.

Denote Ks as the S coordinate’s EMBOSS CONSTANT NV state. Denote Kt
as the T coordinate’s EMBOSS CONSTANT NV state. These constants
shoul d typically be set to the reciprocal of the width and hei ght
respectively of the texture map used for enbossing.

Denote E as foll ows:

Es = PCTs + Ks * (Lx*BNx + Ly*BNy + Lz*BNz) * PCTq
Et = PCTt - Kt * (Lx*Tx + Ly*Ty + Lz*Tz) * PCIq

Er = PCTr

Eq = PCTg

Then the val ue assigned to an s, t, r, and g coordinates are Es,
Et, Er, and Eq respectively. However, for this assignment to
occur, the following three conditions nust be net. First, all the
texture coordi nate generation nodes of all the texture coordi nates
(S, T, R and Q of the texture unit nust be set to EMBOSS NMAP_NV
Second, all the texture coordi nate generati on nodes of the texture
unit must be enabled. Third, the EMBOSS LI GHT_NV paraneters of
coordinates S and T nust be identical and the |ight and lighting
must be enabled. |f these conditions are not nmet, the val ues of
all coordinates in the texture unit with the EMBOSS MAP_NV node
are undefined."

The | ast paragraph’s first sentence should be changed to:
"The state required for texture coordi nate generati on conprises
a five-valued integer for each coordinate indicating coordinate
generation node, and a bit for each coordinate to indicate whether
texture coordi nate generation is enabled or disabled. |In addition,
four coefficients are required for the four coordi nates for each
of EYE_ LI NEAR and OBJECT LI NEAR;, al so, an enboss constant and
enboss light are required for each of the four coordinates....
The initial values for enmboss constants and enboss lights are 1.0
and LI GHTO respectively."”

Additions to Chapter 3 of the 1.2 Specification (Rasterization)
None

Additions to Chapter 4 of the 1.2 Specification (Per-Fragnment Operations
and the Frane Buffer)

None
Additions to Chapter 5 of the 1.2 Specification (Special Functions)

None

225

‘Arelalidold vIAQIAN

'666T ‘Uoirelodiod VIAIAN WbuAdoD

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_texgen_emboss NVIDIA OpenGL Extension Specifications

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)
None
Additions to the G.X Specification
None
Errors
| N\VALI D ENUM i s generated when TexGen is called with a <pname>
of TEXTURE_GEN _MODE, a <parant val ue or val ue of what <parans>

points to of EMBOSS MAP_NV, and the active texture unit is even.

| N\VALI D ENUM i s generated when TexGen is called with a <pnane>
of EMBOSS CONSTANT_NV and the active texture unit is even.

| N\VALI D ENUM i s generated when TexGen is called with a <pnane>
of EMBOSS LIGHT_NV and the active texture unit is even.

| N\VALI D ENUM i s generated when TexGen is called with a <coord>
of R or Q when <pnane> indi cates EMBOSS CONSTANT _NV.

| N\VALI D ENUM i s generated when TexGen is called with a <coord>
of R or Q when <pnane> indi cates EMBOSS LI GHT_NV.

| N\VALI D ENUM i s generated when TexCGen is called with a <pnane>

of EMBOSS LIGHT_NV and the value of i for the parameter LICGHTi is

negative or is greater than or equal to the value of MAX LI GHTS.
New St at e

(table 6.14, p204) change the entry for TEXTURE GEN MODE t o:

Get Val ue Type Get Conmand Initial Value Description Sec Attribute

TEXTURE_GEN MODE 4xZ5 Get TexGeni v EYE_LI NEAR Function used for 2.10.4 texture
texgen (for s,t,r,
and q)

EMBOSS_CONSTANT_NV 4xR Get TexGenfv 1.0 Scal i ng const ant 2.10.4 texture
for enmboss texgen

EMBOSS_LI GHT_NV 4xZ8* Cet TexGeniv LI CGHTO Li ght used for 2.10.4 texture
enbossi ng.

When ARB nultitexture is supported, the Type columm is per-texture unit.
(the TEXTURE_GEN MODE type changes from 4xZ3 to 4xZ5)
New | mpl ement ation State

None

226

NV_texgen_reflection

Nanme
NV_t exgen_refl ection
Nanme Strings
GL_NV_texgen_reflection
Noti ce

Copyright NvI DI A Corporation,
NVI DI A Proprietary.

Ver si on

August 24, 1999
Nurnber

179

Dependenci es

1999.

NVIDIA OpenGL Extension Specifications

Witten based on the wording of the Qpen@ 1.2 specification but

not dependent on it.

Overvi ew

Thi s extension provides two new texture coordi nate generation nodes
that are useful texture-based |ighting and environnent mappi ng.
The refl ection map node generates texture coordi nates (s,t,r)

mat ching the vertex’'s eye-space reflection vector

The reflection

map node is useful for environment mapping without the singularity

i nherent in sphere mapping.

The nor nal

map node generates texture

coordinates (s,t,r) matching the vertex’'s transfornmed eye-space

nor mal .

| ssues

The normal map node is useful
texturing-based diffuse |ighting nodels.

for sophisticated cube map

Shoul d we place the nornal/reflection vector in the (s,t,r) texture
coordi nates or (s,t,q) coordinates?

RESOLUTI ON: (s, t,r).
the third conponent, the API

Even i f the proposed hardware uses "q" for
should claimto support generation of

(s,t,r) and let the texture matrix (through a concatenation wth

the user-supplied texture matrix) nmove "r" into "q"

Shoul d you be able to have sonme texture coordi nates conputing
REFLECTI ON_MAP_NV and others not? Sane question with NORVAL MAP_NV.

RESCLUTION: YES. This is the way that SPHERE_MAP works. It is
not clear that this would ever be useful though

Shoul d sonet hi ng special be said about the handling of the q
texture coordinate for this spec?

227

NV_texgen_reflection NVIDIA OpenGL Extension Specifications

RESOLUTI ON: NO. But the followi ng paragraph is useful for
i mpl ement ors concerned about the handling of g.

The REFLECTI ON_MAP_NV and NORVAL_MAP_NV npdes are intended to supply
reflection and normal vectors for cube map texturing hardware.

When t hese nbdes are used for cube nap texturing, the generated
texture coordi nates can be thought of as an reflection vector.

The value of the q texture coordinate then sinply scales the

vector but does not change its direction. Because only the vector
direction (not the vector nmgnitude) matters for cube nap texturing,
i npl enentations are free to | eave q undefi ned when any of the s,

t, or r texture coordinates are generated usi ng REFLECTI ON_MAP_NV
or NORVAL_MAP_NV.

New Procedures and Functions
None
New Tokens

Accepted by the <parant paraneters of TexGend, TexGenf, and TexGCeni
when <pnane> paraneter is TEXTURE_GEN_MODE:

NORMAL_VAP_NV 0x8511
REFLECTI ON_MAP_NV 0x8512

When the <pnane> paraneter of TexGendv, TexGenfv, and TexCeniv is
TEXTURE_GEN_MCDE, then the array <paranms> may al so contain
NORMAL_MAP_NV or REFLECTI ON_NMAP_NV.

Additions to Chapter 2 of the 1.2 Specification (QpenG. Operation)
-- Section 2.10.4 "Generating Texture Coordinates"
Change the last sentence in the 1st paragraph to:

"If <pname> is TEXTURE_GEN MODE, then either <parans> points to
or <parane» is an integer that is one of the synbolic constants
OBJECT_LI NEAR, EYE_LI NEAR, SPHERE NMAP, REFLECTI ON_MAP_NV, or
NORMVAL_VAP_NV. "

Add these paragraphs after the 4th paragraph:

"I f TEXTURE_GEN MODE i ndi cates REFLECTI ON_MAP_NV, conpute the
reflection vector r as described for the SPHERE MAP node. Then the
val ue assigned to an s coordinate (the first TexGen argunent val ue
isS) is s =rx; the value assigned to at coordinate is t = ry;
and the value assigned to a r coordinate is r =rz. Calling TexGen
with a <coord> of Q when <pnane> indi cates REFLECTI ON_MAP_NV
generates the error | NVALI D ENUM

| f TEXTURE_GEN _MODE i ndi cat es NORMAL_MAP_NV, compute the nornal
vector n' as described in section 2.10.3. Then the val ue assigned
to an s coordinate (the first TexGen argunent value is S) is s =
nfx; the value assigned to at coordinate ist = nfy; and the

val ue assigned to a r coordinate is r = nfz. (The values nfx, nfy,
and nfz are the conmponents of nf.) Calling TexCGen with a <coord>

228

NVIDIA OpenGL Extension Specifications NV_texgen_reflection
of Q when <pnane> indi cates REFLECTI ON_ MAP_NV generates the error
I NVALI D_ENUM
The | ast paragraph’s first sentence should be changed to:
"The state required for texture coordi nate generation conprises a
five-valued integer for each coordinate indicating coordinate
gener ati on node, "
Additions to Chapter 3 of the 1.2 Specification (Rasterization)
None

Additions to Chapter 4 of the 1.2 Specification (Per-Fragnment Operations
and the Frane Buffer)

None
Additions to Chapter 5 of the 1.2 Specification (Special Functions)
None
Additions to Chapter 6 of the 1.2 Specification (State and State Requests)
None
Additions to the GLX Specification
None
Errors

| N\VALI D ENUM i s generated when TexGen is called with a <coord> of Q
when <pname> i ndi cat es REFLECTI ON_MAP_NV or NORVAL_NMAP_NV.

New St at e

(table 6.14, p204) change the entry for TEXTURE_CGEN_MODE to:

Get Val ue Type Get Conmand Initial Value Description Sec Attribute
TEXTURE_GEN_MODE 4xZ5 Get TexGeniv EYE_LI NEAR Function used for 2.10.4 texture
texgen (for s,t,r,
and q)

(the type changes from 4xZ3 to 4xZ5)
New | mpl ement ation State

None

229

NV_texture_env_combine4 NVIDIA OpenGL Extension Specifications

Name
NV_t ext ure_env_conbi ne4d

Nanme Strings
GL_NV_texture_env_conbi ned

Cont act
M chael Gold, NVIDI A Corporation (gold "at’ nvidia.com

Not i ce
Copyright NvIDI A Corporation, 1999, 2000.

| P Status
NVIDI A Proprietary.
Thi s docunent is protected by copyright and contains infornmation
proprietary to NVID A Corporation. The receipt or possession of this
docunent does not convey any express or inplied rights to reproduce,
di sclose, distribute or prepare deivative works its contents or to
manuf acture, use, sell or inport anything that it nay describe in
whole or in part. The docunent is provided as is with no express
or inplied representation or warranty of any kind as the accuracy of
the information, its fitness for a particular purpose or otherw se.

Ver si on

Last update: July 25, 2000
$Dat e: 1999/06/21 13:54:17 $ $Revision: 1.2 $

Nunber
195
Dependenci es

EXT texture_env_conbine is required and is nodified by this extension
ARB multitexture affects the definition of this extension

Overvi ew

New texture environnment function COVBI NE4_NV al | ows progranmabl e
texture conbi ner operations, including

ADD Arg0 * Argl + Arg2 * Arg3
ADD_SI GNED_EXT Arg0 * Argl + Arg2 * Arg3 - 0.5

where Arg0, Argl, Arg2 and Arg3 are derived from

230

‘Arejalidold vIQIAN

'666T ‘Uoirelodio)d VIAIAN WbuAdoD

NVIDIA OpenGL Extension Specifications NV_texture_env_combine4

ZERO the value 0

PRI MARY_COLOR_EXT primary col or of incom ng fragnent

TEXTURE texture color of corresponding texture unit

CONSTANT_EXT texture environnent constant col or

PREVI OQUS_EXT result of previous texture environnent; on
texture unit 0, this maps to PRI MARY_COLOR EXT

TEXTURE<n>_ARB texture color of the <n>th texture unit

In addition, the result nmay be scaled by 1.0, 2.0 or 4.0.
| ssues

None
New Procedures and Functions

None
New Tokens

Accepted by the <paranms> paraneter of TexEnvf, TexEnvi, TexEnvfv, and
TexEnvi v when the <pnane> paraneter value is TEXTURE_ENV_MODE

COMVBI NE4_NV 0x8503
Accepted by the <pnane> paraneter of GetTexEnvfv, GetTexEnviv,

TexEnvf, TexEnvi, TexEnvfv, and TexEnviv when the <target> paraneter
val ue i s TEXTURE_ENV

SOURCE3_RGB_NV 0x8583
SOURCE3_ALPHA NV 0x858B
OPERAND3_RGB_NV 0x8593
OPERAND3_ALPHA NV 0x859B

Accepted by the <parans> paraneter of TexEnvf, TexEnvi, TexEnvfv, and
TexEnvi v when the <pnane> paraneter value is SOURCEO RGB EXT,
SOURCE1_RGB_EXT, SOURCE2_RGB_EXT, SOURCE3_RGB_NV, SOURCEO_ALPHA EXT,
SOURCE1_ALPHA EXT, SOURCE2_ALPHA EXT, or SOURCE3_ALPHA NV

ZERO
TEXTURE<n>_ARB

where <n> is in the range 0 to NUMBER OF TEXTURE_UNI TS _ARB- 1

Accepted by the <parans> paraneter of TexEnvf, TexEnvi, TexEnvfv, and
TexEnvi v when the <pnane> paraneter value is OPERANDO RGB EXT,
OPERAND1_RGB_EXT, OPERAND2_RGB_EXT or OPERAND3_RGB_NV

SRC_COLOR
ONE_M NUS_SRC_COLOR
SRC_ALPHA

ONE_M NUS_SRC_ALPHA

231

‘Arelalidold vIAQIAN

'666T ‘Uoirelodiod VIAIAN WbuAdoD

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_texture_env_combine4 NVIDIA OpenGL Extension Specifications

Accepted by the <paranms> paraneter of TexEnvf, TexEnvi, TexEnvfv, and
TexEnvi v when t he <pnane> paraneter val ue is OPERANDO_ALPHA EXT,
OPERANDL_ALPHA EXT, OPERAND2_ALPHA EXT, or OPERAND3_ALPHA NV

SRC_ALPHA
ONE_M NUS_SRC_ALPHA

Additions to Chapter 2 of the G. Specification (OpenG. Operation)
None
Additions to Chapter 3 of the GL Specification (Rasterization)

Added to subsection 3.8.9, before the paragraph describing the state
requirenents:

If the value of TEXTURE _ENV_MODE is COMBI NE4_NV, the form of the
texture function depends on the val ues of COVBI NE_RGB _EXT and

COMBI NE_ALPHA EXT, according to table 3.21. The RGB and ALPHA results
of the texture function are then nultiplied by the val ues of
RGB_SCALE EXT and ALPHA SCALE, respectively. The results are cl anped
to [0,1]. If the value of COVBI NE_RGB_EXT or COMVBI NE_ALPHA EXT is not
one of the listed values, the result is undefined.

COVBI NE_RGB_EXT or

COVBI NE_ALPHA _EXT Texture Function
ADD Arg0 * Argl + Arg2 * Arg3
ADD_SI GNED_EXT Arg0 * Argl + Arg2 * Arg3 - 0.5

Tabl e 3.21: COMBI NE4A_NV texture functions

The argunments ArgO, Argl, Arg2 and Arg3 are determnined by the val ues
of SOURCE<n>_RGB_EXT, SOURCE<n>_ALPHA EXT, OPERAND<n>_RGB_EXT and
OPERAND<n>_ ALPHA EXT. In the following two tables, Ct and At are the
filtered texture RGB and al pha values; Cc and Ac are the texture

envi ronnent RGB and al pha values; Cf and Af are the RGB and al pha of
the primary color of the incom ng fragment; and Cp and Ap are the RGB
and al pha values resulting fromthe previous texture environnent. On
texture environnent 0, Cp and Ap are identical to Cf and Af,
respectively. Ct<n> and At<n> are the filtered texture RG and al pha
val ues fromthe texture bound to the <n>th texture unit. |If the <n>th
texture unit is disabled, the value of each conponent is 1. The
relationship is described in tables 3.22 and 3. 23.

232

NVIDIA OpenGL Extension Specifications

SOURCE<n>_RGB_EXT

TEXTURE

CONSTANT_EXT

PRI MARY_COLOR_EXT

PREVI QUS_EXT

TEXTURE<n>_ARB

SRC_COLOR
ONE_M NUS_SRC_COLOR
SRC_ALPHA
ONE_M NUS_SRC_ALPHA
SRC_COLOR
ONE_M NUS_SRC_COLOR
SRC_ALPHA
ONE_M NUS_SRC_ALPHA
SRC_COLOR
ONE_M NUS_SRC_COLOR
SRC_ALPHA
ONE_M NUS_SRC_ALPHA
SRC_COLOR
ONE_M NUS_SRC_COLOR
SRC_ALPHA
ONE_M NUS_SRC_ALPHA
SRC_COLOR
ONE_M NUS_SRC_COLOR
SRC_ALPHA
ONE_M NUS_SRC_ALPHA
SRC_COLOR
ONE_M NUS_SRC_COLOR
SRC_ALPHA
ONE_M NUS_SRC_ALPHA

NV_texture_env_combine4

(1-Ct<n>)
At <n>
(1- At <n>)

Tabl e 3.22: Argunments for COMBI NE_RGB EXT functions

SOURCE<n>_ ALPHA EXT
TEXTURE
CONSTANT_EXT

PRI MARY_COLOR_EXT
PREVI OUS_EXT

TEXTURE<n> ARB

OPERAND<n>_ ALPHA EXT

SRC_ALPHA
ONE_M NUS_SRC_ALPHA
SRC_ALPHA
ONE_M NUS_SRC_ALPHA
SRC_ALPHA
ONE_M NUS_SRC_ALPHA
SRC_ALPHA

ONE_M NUS_SRC_ALPHA

SRC_ALPHA
ONE_M NUS_SRC_ALPHA
SRC_ALPHA
ONE_M NUS_SRC_ALPHA

Ar gunent

(1-At)
Ac
(1- Ac)
Af

(1- Af)

Ap

(1-Ap)

At <n>

(1- At <n>)

Tabl e 3.23: Argunents for COVBI NE_ALPHA EXT functions

Additions to Chapter 4 of the G. Specification (Per-Fragnent Operations

and the Franebuffer)

None

Additions to Chapter 5 of the G. Specification (Special

None

233

Functi ons)

‘Arelalidold vIAQIAN

'666T ‘Uoirelodiod VIAIAN WbuAdoD

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_texture_env_combine4

NVIDIA OpenGL Extension Specifications

Additions to Chapter 6 of the G. Specification (State and State Requests)

None

Additions to the G.X Specification
None

GLX Protocol
None

Errors

I NVALID ENUM i s generated if <parans> val ue for SOURCEO RGB EXT,
SOURCE1_RGB_EXT, SOURCE2_RGB _EXT, SOURCE3_RGB_NV, SOURCEO_ALPHA EXT,
SOURCE1_ALPHA EXT, SOURCE2_ALPHA EXT or SOURCE3_ALPHA NV is not one of
ZERO, TEXTURE, CONSTANT_EXT, PRI MARY COLOR EXT, PREVI QUS EXT or
TEXTURE<n> ARB, where <n> is in the range 0 to

NUVBER OF TEXTURE_UNI TS_ARB- 1.

I N\VALID ENUM i s generated if <params> val ue for OPERANDO_RGB EXT,

OPERAND1_RGB_EXT, OPERAND2_RGB EXT or OPERAND3_RGB NV is not one of

SRC_COLOR, ONE_M NUS_SRC COLOR, SRC ALPHA or

I NVALID ENUM i s generated if <params> val ue for OPERANDO_ALPHA EXT

ONE_M NUS_SRC_ALPHA.

OPERANDL_ALPHA EXT, OPERAND2_ALPHA EXT, or OPERAND3_ALPHA NV is not

one of SRC ALPHA or ONE_M NUS_SRC AL PHA.

Modi

fications to EXT_texture_env_conbi ne

This extension relaxes the restrictions on SOURCE<n> RGB EXT,
SOURCE<n> ALPHA EXT, OPERAND<n> RGB EXT and OPERAND<n> ALPHA EXT for
use with EXT texture_env_conbine. Al parans specified by Table 3.22

and Table 3.23 are valid.
Dependenci es on ARB nultitexture

If ARB nultitexture is not inplenented, all

references to

TEXTURE<n>_ARB and NUVBER OF TEXTURE_UNI TS_ARB are del et ed.

New St at e
Get Val ue Get Conmand Type
SOURCE3_RGB_NV Get TexEnvi v n x Z5+n
SOURCE3_ALPHA NV Get TexEnvi v n x Z5+n
OPERAND3_RGB_NV Get TexEnvi v n x Z2
OPERAND3_ALPHA NV Get TexEnvi v n x Z2

New | npl enent ati on Dependent State

None

234

Initial Value

ZERO
ONE_M NUS_SRC_COLOR
ONE_M NUS_SRC_ALPHA

Attribute
texture
texture
texture
texture

NVIDIA OpenGL Extension Specifications NV_texture_env_combine4

NVIDI A I nplenentation Details
Because of a hardware limtation, TNT, TNT2, GeForce, and Quadro

treat "scale by 4.0" with the COVBI NE_RGB_EXT or COMVBI NE_ALPHA EXT
node of ADD SI GNED EXT as "scale by 2.0".

235

‘Arejanndold vIAQIAN

'666T ‘uoneiodio)d vIAIAN ybuAdoD

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

Name
NV_vertex_array_range

Nanme Strings
GL_NV_vertex_array_range

Cont act
Mark J. Kilgard, NVIDI A Corporation (njk "at’ nvidia.con

Not i ce
Copyright NvIDI A Corporation, 1999, 2000.

| P Status
NVIDI A Proprietary.
Thi s docunent is protected by copyright and contains infornmation
proprietary to NVID A Corporation. The receipt or possession of this
docunent does not convey any express or inplied rights to reproduce,
di sclose, distribute or prepare deivative works its contents or to
manuf acture, use, sell or inport anything that it nay describe in
whole or in part. The docunent is provided as is with no express
or inplied representation or warranty of any kind as the accuracy of
the information, its fitness for a particular purpose or otherw se.

Status
Shi pping (version 1.0)

Ver si on
July 25, 2000

Nurnber
190

Dependenci es
None

Overvi ew
The goal of this extension is to pernmit extremely high vertex
processing rates via QpenG vertex arrays even when the CPU | acks
the necessary data novenent bandwi dth to keep up with the rate
at which the vertex engine can consune vertices. CPUs can keep
up if they can just pass vertex indices to the hardware and
let the hardware "pull" the actual vertex data via Direct Menory
Access (DMA). Unfortunately, the current OpenG 1.1 vertex array

functionality has semantic constraints that nmake such an approach
hard. Hence, the vertex array range extension.

236

NVIDIA OpenGL Extension Specifications

Thi s extension provides a nechanismfor deferring the pulling of
vertex array elenents to facilitate DMAed pulling of vertices for
fast, efficient vertex array transfers. The OpenG client need only
pass vertex indices to the hardware which can DVA the actual index’s
vertex data directly out of the client address space.

The OpenGL 1.1 vertex array functionality specifies a fairly strict
coherency nodel for when OpenG. extracts vertex data froma vertex
array and when the application can update the in nenory

vertex array data. The OpenGL 1.1 specification says "Changes
nmade to array data between the execution of Begin and the
correspondi ng execution of End may affect calls to ArrayEl enent
that are made within the sane Begi n/ End period in non-sequenti al
ways. That is, a call to ArrayEl enent that precedes a change to
array data nmay access the changed data, and a call that follows

a change to array data nay access the original data."

This means that by the tinme End returns (and DrawArrays and

DrawEl enents return since they have inplicit Ends), the actual vertex
array data nust be transferred to Qpen@.. This strict coherency nodel
prevents us fromsinply passing vertex el enent indices to the hardware
and having the hardware "pull" the vertex data out (which is often
long after the End for the prinmtive has returned to the application).

Rel axi ng this coherency nodel and boundi ng the range from which
vertex array data can be pulled is key to making OpenG vertex
array transfers faster and nore efficient.

The first task of the vertex array range extension is to rel ax

the coherency nodel so that hardware can indeed "pull" vertex

data fromthe OpenG client’s address space long after the application
has conpl eted sending the geonetry primtives requiring the vertex

dat a.

The second problemwith the OpenG. 1.1 vertex array functionality is
the lack of any guidance fromthe APl about what regi on of nenory
vertices can be pulled from There is no size limt for OpenG 1.1
vertex arrays. Any vertex index that points to valid data in al
enabl ed arrays is fair gane. This makes it hard for a vertex DVA
engine to pull vertices since they can be potentially pulled from
anywhere in the Qpen@ client address space.

The vertex array range extension specifies a range of the OpenG
client’s address space where vertices can be pulled. Vertex indices
that access any array el enments outside the vertex array range

are specified to be undefined. This permts hardware to DVA from
finite regions of OpenG client address space, maki ng DMA engi ne

i mpl ement ation tractable.

The extension is specified such that an (error free) OpenG client
using the vertex array range functionality could no-op its vertex
array range comands and operate equivalently to using (if slower
than) the vertex array range functionality.

Because different nenory types (local graphics nenmory, AGP nenory)

have different DVA bandwi dths and cachi ng behavior, this extension
i ncl udes a wi ndow system dependent nmenory allocator to allocate

237

NV_vertex_array_range

‘Arelalidold vIAQIAN

'666T ‘Uoirelodiod VIAIAN WbuAdoD

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

cleanly the nost appropriate nmenory for constructing a vertex array
range. The nmenory allocator provided allows the application to
tradeoff the desired CPU read frequency, CPU wite frequency, and
nmenory priority while still leaving it up to OpenGL inpl enentation
the exact nmenory type to be all ocated.

| ssues

How does this extension interact with the conpiled vertex_ array
ext ensi on?

I think they should be independent and not interfere with
each other. |In practice, if you use NV_vertex_array_range
you can surpass the performance of conpiled vertex_array

Shoul d sone expl anati on be added about what happens when an OpenGL
application updates its address space in regions overlapping with
the currently configured vertex array range?

RESOLUTION: | think the right thing is to say that you get
non-sequential results. |In practice, you'll be using an old
context DMA pointing to the old pages.

If the application change's its address space within the
vertex array range, the application should cal

gl VertexArrayRangeNV again. That will re-make a new vertex
array range context DMA for the application’ s current address
space.

If we are falling back to software transformation, do we still need to
abi de by | eaving "undefined" vertices outside the vertex array range?
For exanple, pointers that are not 32-bit aligned would |likely cause
a fall back.

RESOLUTION: No. The fact that vertex is "undefined" nmeans we
can do anything we want (as long as we send a vertex and do not
crash) so it is perfectly fine for the software puller to

grab vertex information not available to the hardware puller.

Should we give a progranmer a sense of how big a vertex array
range they can specify?

RESOLUTI ON: No. Just document it if there are linitations.
Probably very hardware and operating system dependent.

Is it clear enough that | anguage about ArrayEl enment
al so applies to DrawArrays and DrawkEl ement s?

Maybe not, but OpenG. 1.1 spec is clear that DrawArrays and
Drawkl ements are defined in terms of ArrayEl enent.

Shoul d gl Fl ush be the sane as gl VertexArrayRangeFl ush?

RESOLUTION: No. A glFlush is cheaper than a gl VertexArrayRangeFl ush

t hough a gl Vert exArrayRangeFl ushNV should do a fl ush.

If any the data for any enabled array for a given array el enment index

238

NVIDIA OpenGL Extension Specifications NV_vertex_array_range

falls outside of the vertex array range, what happens?
RESOLUTI ON: An undefined vertex is generated.
What error is generated in this case?

| don’t know yet. W should nake sure the hardware really does
| et us know when vertices are undefined.

Note that this is alittle weird for OpenG. since nost errors
in Open@ result in the conmand being ignored. Not in this
case though.

Shoul d this extension support an interface for allocating video
and AGP nenory?

RESCLUTION: YES. It seens |like we should be able to | eave
the task of menory allocation to DirectDraw, but DirectDraw s
asynchronous unmappi ng behavi or and having to hold | ocks to
update DirectDraw surfaces nakes that mechanismto cunbersone.

Plus the APl is a lot easier if we do it ourselves.
How do we decide what type of nenory to allocate for the application?

RESOLUTI ON: Usage hints. The application rates the read
frequency (how often will they read the menory), the wite
frequency (how often will they wite the nenory), and the
priority (how inportant is this nenory relative to other

uses for the nmenory such as texturing) on a scale of 1.0

to 0.0. Using these hints and the size of the menory requsted,
the Open@ inplenentation decides where to allocate the nenory.

We try to not directly expose particular types of nenory
(AGP, local nenory, cached/uncached, etc) so future nenory
types can be supported by nerely updating the QpenG

i mpl ement ati on.

Shoul d the nenory allocator functionality be available be a part
of the G or wi ndow system dependent (G.X or WGE.) APIs?

RESCLUTI ON: The wi ndow syst em dependent API .
The nenory all ocator should be considered a wi ndow systen
operating system dependent operation. This also pernmts
nmenory to be allocated when no OpenG. rendering contexts
exi st yet.

Procedures and Functi ons

voi d VertexArrayRangeNV(si zei |ength, void *pointer)
voi d Fl ushVert exArrayRangeNV(voi d)

239

‘Arelalidold vIAQIAN

'666T ‘Uoirelodiod VIAIAN WbuAdoD

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

New Tokens

Accepted by the <cap> paraneter of EnabledientState,
Di sabl eCientState, and |sEnabl ed:

VERTEX_ARRAY RANGE_NV 0x851D

Accept ed by the <pnane> paraneter of GetBool eanv, Getlntegerv,
Get Fl oatv, and Get Doubl ev:

VERTEX_ARRAY_RANGE_LENGTH_NV 0x851E
VERTEX_ARRAY RANGE_VALI D_NV 0x851F
MAX_VERTEX_ARRAY_ RANGE_ELEMENT NV 0x8520

Accepted by the <pnane> paraneter of GetPointerv:
VERTEX_ARRAY_RANGE_PO NTER_NV 0x8521
Additions to Chapter 2 of the 1.1 Specification (QpenG. Operation)

After the discussion of vertex arrays (Section 2.8) add a
description of the vertex array range:

"The command
voi d VertexArrayRangeNV(si zei |ength, void *pointer)

specifies the current vertex array range. Wen the vertex array
range is enabled and valid, vertex array vertex transfers fromwthin
the vertex array range are potentially faster. The vertex array
range is a contiguous region of (virtual) address space for placing
vertex arrays. The "pointer" paraneter is a pointer to the base of
the vertex array range. The "length" pointer is the length of the
vertex array range in basic nmachine units (typically unsigned bytes).

The vertex array range address space regi on extends from "pointer"
to "pointer + length - 1" inclusive. Wen specified and enabl ed,
vertex array vertex transfers fromw thin the vertex array range
are potentially faster.

There is some system burden associated with establishing a vertex
array range (typically, the nenmory range nust be | ocked down).

If either the vertex array range pointer or size is set to zero,

the previously established vertex array range is released (typically,
unl ocki ng the nenory).

The vertex array range may not be established for operating system
dependent reasons, and therefore, not valid. Reasons that a vertex
array range cannot be established include spanning different nenory
types, the nenory could not be | ocked down, alignnent restrictions

are not met, etc.

The vertex array range is enabled or disabled by calling
EnableClientState or DisableClientState with the synbolic
const ant VERTEX_ARRAY_RANGE_NV.

The vertex array range is either valid or invalid and this state can

240

NVIDIA OpenGL Extension Specifications

be determ ned by queryi ng VERTEX ARRAY RANGE VALID NV. The vertex
array range is valid when the followi ng conditions are net:

0 VERTEX_ARRAY_ RANGE NV is enabl ed.
0 VERTEX ARRAY is enabl ed.

o0 VertexArrayRangeNV has been called with a non-null pointer and
non-zero si ze.

o The vertex array range has been established.

0 An inplenentation-dependent validity check based on the
poi nter alignnment, size, and underlying nenory type of the
vertex array range region of nenory.

0 An inplenentation-dependent validity check based on
the current vertex array state including the strides, sizes,
types, and pointer alignnents (but not pointer value) for
currently enabl ed vertex arrays.

0 Oher inplenentation-dependent validaity checks based on
ot her OpenGL rendering state.

O herwise, the vertex array range is not valid. |If the vertex array
range is not valid, vertex array transfers will not be faster.

When the vertex array range is valid, ArrayEl enent conmmands may
generate undefined vertices if and only if any indexed el ements of
the enabl ed arrays are not within the vertex array range or if the
index is negative or greater or equal to the inplenentation-dependent
val ue of MAX VERTEX ARRAY RANGE ELEMENT _NV. |If an undefined vertex
is generated, an | NVALI D OPERATION error may or may not be generated.

The vertex array cohenecy nodel specifies when vertex data nust be
be extracted fromthe vertex array nmenory. Wen the vertex array
range is not valid, (quoting the specification) ‘Changes nade to
array data between the execution of Begin and the corresponding
execution of End may effect calls to ArrayEl enent that are made
within the sane Begin/End period in non-sequential ways. That is,
a call to ArrayEl enent that precedes a change to array data may
access the changed data, and a call that follows a change to array
data may access the original data.’

When the vertex array range is valid, the vertex array coherency
nodel is relaxed so that changes nade to array data until the next
"vertex array range flush" may affects calls to ArrayEl enent in
non-sequential ways. That is a call to ArrayEl enent that precedes

a change to array data (wi thout an intervening "vertex array range
flush") may access the changed data, and a call that follows a change
(without an intervening "vertex array range flush") to array data

may access original data.

A 'vertex array range flush’ occurs when one of the follow ng
operations occur

o Finish returns.

241

NV_vertex_array_range

‘Arelalidold vIAQIAN

'666T ‘Uoirelodiod VIAIAN WbuAdoD

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

0 FlushVertexArrayRangeNV returns.

0 VertexArrayRangeNV returns.

0 dientStateDi sable of VERTEX ARRAY _RANGE NV returns.
0 dientStateEnabl e of VETEX ARRAY_RANGE NV returns.

0 Another OpenG. context is made current.

The client state required to inplenent the vertex array range
consi sts of an enable bit, a nmenory pointer, an integer size,
and a valid bit.

If the nmenory mappi ng of pages within the vertex array range changes,
using the vertex array range may or may not result in undefined data
being fetched fromthe vertex arrays when the vertex array range is
enabl ed and valid. To ensure that the vertex array range reflects
the address space’s current state, the application is responsible
for calling VertexArrayRange again after any nenory mappi ng changes
within the vertex array range."llo

Additions to Chapter 5 of the 1.1 Specification (Special Functions)
Add to the end of Section 5.4 "Display Lists"

"Vert exArrayRangeNV and Fl ushVert exArrayRangeNV are not conplied
into display lists but are executed i nmedi ately.

If a display list is conpiled while VERTEX ARRAY RANGE NV is
enabl ed, the conmands ArrayEl ement, DrawArrays, DrawEl enents,
and DrawRangeEl enents are accunulated into a display list as
i f VERTEX_ARRAY_RANCGE_NV is disabled."

Additions to the WA interface:

"When establishing a vertex array range, certain types of menory
may be nore efficient than other types of nenory. The comuands

void *wgl Al | ocat eMenor yNV(si zei size
fl oat readFrequency,
float witeFrequency,
float priority)

voi d wgl FreeMenor yNV(voi d *poi nter)

allocate and free nenory that may be nore suitable for establishing
an efficient vertex array range than nmenory allocated by other means.
The wgl Al | ocat eMenoryNV conmand al | ocat es <si ze> bytes of contiguous
menory.

The <readFrequency>, <writeFrequency>, and <priority> paranmeters are
usage hints that the OQpenG inplenentation can use to determ ne the
best type of nmenory to allocate. These paraneters range fromO0.0

to 1.0. A <readFrequency> of 1.0 indicates that the application
intends to frequently read the allocated nmenory; a <readFrequency>
of 0.0 indicates that the application will rarely or never read the

242

NVIDIA OpenGL Extension Specifications

Addi

menory. A <writeFrequency> of 1.0 indicates that the application
intends to frequently wite the allocated nenory; a <witeFrequency>
of 0.0 indicates that the application will rarely wite the nenory.

A <priority> paranmeter of 1.0 indicates that nenory type should be
the nost efficient available nenory, even at the expense of (for
exanpl e) avail able texture nenory; a <priority> of 0.0 indicates that
the vertex array range does not require an efficient nenory type

(for example, so that nore efficient menory is available for other
pur poses such as texture nenory).

The OpenCL inplenentation is free to use the <size>, <readFrequency>,
<writeFrequency> and <priority> paranmeters to determ ne what nenory
type should be all ocated. The nmenory types avail abl e and how t he
nenory type is determined is inplenentation dependent (and the

i npl enentation is free to ignore any or all of the above paraneters).

Possi bl e menory types that could be allocated are uncached nenory,
write-conbi ned nenory, graphics hardware nenory, etc. The intent
of the wgl Al l ocat eMenoryNV conmand is to pernit the allocation of
nenory for efficient vertex array range usage. However, there is
no requirenment that nmenory allocated by wgl Al | ocat eMenor yNV nust be
used to allocate nmenory for vertex array ranges.

If the nmenory cannot be allocated, a NULL pointer is returned (and
no OpenGL error is generated). An inplenentation that does not
support this extension’s nenory allocation interface is free to
never allocate menory (always return NULL).

The wgl FreeMenor yNV command frees nenory allocated with

wgl Al | ocat eMenoryNV. The <pointer> should be a pointer returned by
wgl Al | ocat eMenoryNV and not previously freed. |[|f a pointer is passed
to wgl FreeMenoryNV that was not allocated via wgl Al l ocat eMenor yNV

or was previously freed (without being reallocated), the free is
ignored with no error reported.

The nenory all ocated by wgl Al l ocat eMenor yNV shoul d be available to
all other threads in the address space where the nenory is allocated
(the nmenory is not private to a single thread). Any thread in the
address space (not sinply the thread that allocated the nenory)

may use wgl FreeMenoryNV to free nenory allocated by itself or any

ot her thread.

Because wgl Al | ocat eMenoryNV and wgl FreeMenor yNV are not OpenGL
renderi ng comuands, these comands do not require a current context.
They operate normally even if called within a Begin/End or while
conpiling a display list."

tions to the GX Specification

Sane | anguage as the "Additions to the WEL Specification" section
except all references to wgl Al l ocat eMenoryNV and wgl Fr eeMenor yNV
shoul d be replaced with gl XAl |l ocat eMenor yNV and gl XFreeMenor yNV
respectively.

Addi tional | anguage:

"OpenG inplementations using GLX indirect rendering should fai

243

NV_vertex_array_range

‘Arelalidold vIAQIAN

'666T ‘Uoirelodiod VIAIAN WbuAdoD

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

to set up the vertex array range (failing to set the vertex array
valid bit so the vertex array range functionality is not usable).
Additionally, gl XAl ocateMenoryNV always fails to allocate nenory

(returns NULL) when used with an indirect rendering context."
GLX Protocol

None
Errors

| NVALI D_OPERATION is generated if VertexArrayRange or

Fl ushVert exArrayRange is called between the execution of Begin

and the correspondi ng execution of End.

| NVALI D_OPERATI ON may be generated if an undefined vertex is

o)) gener at ed.

(e}

2 New St at e

c Initial

o Get Val ue Get Command Type Val ue

o

= B P LR PEPE P e ool

— VERTEX_ ARRAY_ RANGE NV | sEnabl ed B Fal se

8 VERTEX_ ARRAY_ RANGE PO NTER NV Get Poi nterv Z+ 0

= VERTEX_ ARRAY RANGE LENGTH NV Get | nt egerv Z+ 0

8] VERTEX_ARRAY_RANGE_VALI D_NV Get Bool eanv B Fal se
>

< E New | npl enent ati on Dependent State

N o

- = Get Val ue Get Command Type M ni mum Val ue

B YU

Z Qo MAX_VERTEX_ARRAY_RANGE _ELEMENT_NV Getlntegerv Z+ 65535

- Qo

.C_D<E NV10 | npl enentation Details

L —

é O This section describes inplenentation-defined limts for NV10:

63 5; The val ue of MAX_ VERTEX_ARRAY_RANGE ELEMENT_NV is 65535

This section describes bugs in the NV10 vertex array range. These
bugs will be fixed in a future hardware rel ease:

I f VERTEX ARRAY is enabled with a format of G._SHORT and the
vertex array range is valid, a vertex array vertex with an X
Y, Z, or Wcoordinate of -32768 is wongly interpreted as zero.
Exanpl e: the X Y coordinate (-32768,-32768) is incorrectly read
as (0,0) fromthe vertex array.

| f TEXTURE_COORD ARRAY is enabled with a format of G._SHORT

and the vertex array range is valid, a vertex array texture
coord with an S, T, R or Qcoordinate of -32768 is wongly
interpreted as zero. Exanple: the S T coordinate (-32768,-32768)
is incorrectly read as (0,0) fromthe texture coord array.

This section describes the inplenentation-dependent validity
checks for NV10.

o For the NV10 inplenmentation-dependent validity check for the

244

Attrib

vertex-array
vertex-array
vertex-array
vertex-array

NVIDIA OpenGL Extension Specifications NV_vertex_array_range

vertex array range region of nenory to be true, all of the
foll owi ng nust be true:

1. The <pointer> must be 32-byte aligned.

2. The underlying nenmory types nust all be the same (all
standard system nenory -OR- all AGP nenory -OR- all video
nenory) .

o For the NV10 inplenmentation-dependent validity check for the
vertex array state to be true, all of the followi ng nust be
true:

1. (VERTEX_ARRAY nust be enabl ed - AND-
The vertex array stride nust be | ess than 256 - AND-
((The vertex array type nust be FLOAT - AND
The vertex array stride nust be a multiple of 4 bytes -AND
The vertex array pointer nust be 4-byte aligned - AND
The vertex array size nust be 2, 3, or 4) -OR-
(The vertex array type nust be SHORT - AND-
The vertex array stride nust be a multiple of 4 bytes - AND-
The vertex array pointer nust be 4-byte aligned. -AND
The vertex array size nust be 2) -OR
(The vertex array type nust be SHORT - AND-
The vertex array stride nust be a multiple of 8 bytes -AND-
The vertex array pointer nust be 8-byte aligned. -AND
The vertex array size nust be 4) -OR
(The vertex array type nust be SHORT - AND-
The vertex array stride nust be a multiple of 8 bytes -AND-
The vertex array pointer nust be 8-byte aligned.)
The vertex array stride nust non-zero - AND-
The vertex array size nust be 3)))

2. (NORMAL_ARRAY mnust be disabled.) -OR -
(NORMVAL_ARRAY mnust be enabl ed - AND-
The nornmal array size nmust be 3 - AND-
The normal array stride must be | ess than 256 - AND-
((The normal array type nust be FLOAT - AND-
The normal array stride nmust be a nultiple of 4 bytes - AND-
The normal array pointer nust be 4-byte aligned.) -OR
(The nornmal array type nust be SHORT - AND-
The normal array stride nust be a nultiple of 8 bytes - AND-
The nornmal array stride must non-zero - AND
The normal array pointer nust be 8-byte aligned.)))

3. (COLOR_ARRAY mnust be disabled.) -OR -

(COLOR_ARRAY nust be enabl ed - AND-
The col or array type nust be FLOAT or UNSI GNED BYTE - AND-
The color array stride nust be a nultiple of 4 bytes - AND
The color array stride nust be |ess than 256 - AND-
The col or array pointer nmust be 4-byte aligned - AND-

((The color array size nmust be 3 -AND

The color array stride nust non-zero) -OR-

(The color array size nust be 4))

4. (SECONDARY_COLOR_ARRAY mnust be disabled.) -OR -

(SECONDARY_COLOR_ARRAY nust be enabl ed - AND-
The secondary color array type nust be FLOAT or UNSI GNED BYTE - AND-
The secondary color array stride nust be a multiple of 4 bytes - AND
The secondary color array stride nust be [ess than 256 - AND-
The secondary color array pointer nust be 4-byte aligned - AND-

((The secondary color array size nust be 3 -AND

The secondary color array stride nust non-zero) -OR-

245

‘Arelalidold vIAQIAN

'666T ‘Uoirelodiod VIAIAN WbuAdoD

NV_vertex_array_range

NVIDIA OpenGL Extension Specifications

(The secondary color array size nust be 4))

5. For texture units zero and one:

(TEXTURE_COORD_ARRAY nust be disabled.) -OR -
(TEXTURE_COORD_ARRAY nust be

The texture coord array stri
The texture
The texture
The texture
The texture
The texture
The texture
The texture
The texture
The texture
The texture
The texture
The texture
The texture
The texture
The texture
The texture
The texture
The texture
The texture
The texture
The texture
The texture

((

The
The
The
The
The

Copyright NVIDIA Corporation, 1999.

NVIDIA Proprietary.

8. (FOG.

vertex
vertex
vertex
vertex
vertex

wei ght
wei ght
wei ght
wei ght
wei ght

coord array
coord array
coord array
coord array
coord array
coord array
coord array
coord array
coord array
coord array
coord array
coord array
coord array
coord array
coord array
coord array
coord array
coord array
coord array
coord array
coord array
coord array

enabl ed - AND-

de nust be less than 256 - AND-

type nmust be FLOAT - AND-

poi nter nust be 4-byte aligned.)
stride nmust be a multiple of 4 bytes
size nust be 1, 2, 3, or 4) -OR
type nmust be SHORT - AND-

poi nter must be 4-byte aligned.)
stride nust be a nmultiple of 4 bytes
stride nmust non-zero - AND-

size nust be 1) -OR

type nmust be SHORT - AND-

poi nter nust be 4-byte aligned.)
stride nmust be a multiple of 4 bytes
size nust be 2) -OR

type nmust be SHORT - AND-

poi nter nust be 8-byte aligned.)
stride nmust be a multiple of 8 bytes
stride nmust non-zero - AND-

size nust be 3) -OR

type nust be SHORT - AND-

poi nter nmust be 8-byte aligned.)
stride nust be a nultiple of 8 bytes
size nust be 4)))

6. (EDGE_FLAG _ARRAY nust be disabled.)

7. (VERTEX_WEI GHT_ARRAY_NV nust be disabled.) -OR -
(VERTEX_WEI GHT_ARRAY_NV nust be enabl ed. -AND -

array type nmust be FLOAT - AND-
array size nmust be 1 - AND
array stride nmust be a multiple of 4 bytes - AND-
array stride nust be |less than 256 - AND-
array pointer nust be 4-byte aligned)

COORDI NATE_ARRAY nust be disabled.)

o For the NV10 inpl ementati on-dependent validity check based on
other OpenGL rendering state is FALSE if any of the following are true

1. (COLOR_LOGE C 0P is enabled - AND
The logic op is not COPY)

2. (LIGHT_MODEL_TWO SIDE is true.)

3. Either texture unit
with a non-zero border.

4. Several

is enabled and active with a texture

ot her obscure unspecified reasons

246

- AND-

- AND-

- AND-

- AND-

- AND-

SGIS_texture_lod NVIDIA OpenGL Extension Specifications

Nanme
SA@ S texture | od
Nanme Strings
GL_SA S texture_ | od
Ver si on
$Dat e: 1997/05/30 01:34:44 $ $Revision: 1.8 $
Nurber
24
Dependenci es

EXT texture is required

EXT texture3D affects the definition of this extension

EXT texture_object affects the definition of this extension
SG detail texture affects the definition of this extension
SA _sharpen_texture affects the definition of this extension

Overvi ew

Thi s extension inposes two constraints related to the texture |evel of
detail paranmeter LOD, which is represented by the G eek character |anbda
in the GL Specification. One constraint clanps LOD to a specified
floating point range. The other linmts the selection of m pmap inmage
arrays to a subset of the arrays that woul d otherw se be consi dered.

Toget her these constraints allow a large texture to be | oaded and
used initially at lowresolution, and to have its resolution raised
gradual ly as nore resolution is desired or available. |Image array
specification is necessarily integral, rather than continuous. By
provi di ng separate, continuous clanping of the LOD paraneter, it is
possi ble to avoid "popping" artifacts when higher resolution images
are provided.

Not e: because the shape of the mipnmap array is always determ ned by
the di nensions of the level 0 array, this array nust be | oaded for
m pmapping to be active. |If the level 0 array is specified with a
nul | image pointer, however, no actual data transfer wll take
place. And a sufficiently tuned i nplenmentation m ght not even

al l ocate space for a level 0 array so specified until true inage
data were presented.

| ssues

* Shoul d detail and sharpen texture operate when the level 0 image
is not being used?

A. Sharpen yes, detail no.

* Shoul d the shape of the m pmap array be determ ned by the
di mensi ons of the level 0 array, regardl ess of the base |evel ?

247

SGIS_texture_lod NVIDIA OpenGL Extension Specifications

A: Yes, this is the better solution. Driving everything from
the base Il evel breaks the proxy query process, and all ows
m pmap arrays to be placed arbitrarily. The issues of
requiring a level 0 array are partially overcone by the use
of null-point |oads, which avoid data transfer and,
potentially, data storage allocation.

* Wth the arithnetic as it is, a linear filter m ght access an
array past the limt specified by MAX LEVEL or p. But the
results of this access are not significant, because the bl end
will weight themas zero.
New Procedures and Functions
None
New Tokens

Accepted by the <pnane> paraneter of TexParaneteri, TexParaneterf,
TexParameteriv, TexParanmeterfv, GetTexParaneteriv, and Get TexParameterfv:

TEXTURE_M N_LOD SG S 0x813A
TEXTURE_MAX_LOD SG S 0x813B
TEXTURE_BASE_LEVEL_SG S 0x813C
TEXTURE_MAX_LEVEL_SG S 0x813D

Additions to Chapter 2 of the 1.0 Specification (OQpenG Operation)

None

248

NVIDIA OpenGL Extension Specifications SGIS_texture_lod

Additions to Chapter 3 of the 1.0 Specification (Rasterization)

GL Specification Table 3.7 is updated as foll ows:

Narme Type Legal Val ues
TEXTURE_WRAP_S i nt eger CLAVP, REPEAT
TEXTURE_WRAP_T i nt eger CLAMP, REPEAT
TEXTURE_WRAP_R EXT i nt eger CLAVP, REPEAT
TEXTURE_M N_FI LTER i nt eger NEAREST, LI NEAR,

NEAREST M PMAP_NEAREST,

NEAREST_M PMAP_LI NEAR,

LI NEAR_M PMAP_NEAREST,

LI NEAR_M PMAP_LI NEAR,

FILTER4_SG S
TEXTURE_MAG FI LTER i nt eger NEAREST, LI NEAR,

FI LTER4_SG S,

LI NEAR DETAIL_SG S,

LI NEAR_DETAI L_ALPHA SG S,

LI NEAR_DETAI L_COLOR_SG S

LI NEAR_SHARPEN_SG S,

LI NEAR_SHARPEN_ALPHA SG S,

LI NEAR_SHARPEN COLOR_SG S

TEXTURE_BORDER _COLOR 4 floats any 4 values in [0,1]
DETAI L_TEXTURE LEVEL_Sd S i nt eger any non-negative integer
DETAI L_TEXTURE_MODE_SG S i nt eger ADD, MODULATE

TEXTURE_ M N LOD SGA S fl oat any val ue
TEXTURE_MAX LOD SA S fl oat any val ue

TEXTURE_BASE LEVEL_Sd S i nt eger any non-negative integer
TEXTURE_MAX LEVEL _SA S i nt eger any non-negative integer

Table 3.7: Texture paraneters and their val ues.

Base Array

Al'though it is not explicitly stated, it is the clear intention

of the Open@ specification that texture mnification filters
NEAREST and LI NEAR, and all texture magnification filters, be
applied to image array zero. This extension introduces a

paraneter, BASE LEVEL, that explicitly specifies which array

level is used for these filter operations. Base level is specified
for a specific texture by calling TexParaneteri, TexParaneterf,
TexParameteriv, or TexParaneterfv with <target> set to TEXTURE 1D,
TEXTURE_2D, or TEXTURE_3D_EXT, <pname> set to TEXTURE BASE_LEVEL_Sd S,
and <paranp set to (or <parans> pointing to) the desired value. The
error I NVALID VALUE is generated if the specified BASE LEVEL is
negati ve.

The | evel of detail parameter LOD is defined in the first paragraph

of Section 3.8.1 (Texture Mnification) of the G. Specification, where
it is represented by the Greek character |anbda. This extension
redefines the definition of LOD as foll ows:

249

SGIS_texture_lod NVIDIA OpenGL Extension Specifications

LOD (x,y) = log base 2 (Qx,Vy))

/' MAX_LOD LOD > MAX_LOD

LOD = (LOD LOD >= MN_LOD and LOD <= MAX LCD
\' MNLODLOD < MN LCD
\ undefi ned M N LOD > MAX LOD

The variable Qin this definition represents the G eek character rho,
as it is used in the Open@ Specification. (Recall that Qis conputed
based on the di nensions of the BASE LEVEL inmmge array.) MN LOD is the
val ue of the per-texture variable TEXTURE M N LOD SE@ S, and MAX LOD i s
the value of the per-texture variable TEXTURE MAX LOD SA S.

Initially TEXTURE_M N_LOD SGE S and TEXTURE_MAX LOD SG S are -1000 and
1000 respectively, so they do not interfere with the normal operation of
texture mapping. These values are respecified for a specific texture
by calling TexParaneteri, TexPareneterf, TexParameteriv, or
TexParameterfv with <target> set to TEXTURE 1D, TEXTURE 2D, or
TEXTURE_3D_EXT, <pnanme> set to TEXTURE_M N_LOD SGE S or
TEXTURE_MAX LOD SA@ S, and <parant set to (or <paranms> pointing to) the
new value. It is not an error to specify a maxi mum LOD value that is

| ess than the mininum LOD val ue, but the resulting LOD val ues are

not defi ned.

LOD is clanped to the specified range prior to any use. Specifically,
the miprmap image array selection described in the M pnappi ng Subsection
of the GL Specification is based on the clanped LOD value. Also, the
determ nation of whether the mnification or magnification filter is
used i s based on the clanped LOD.

M pmap Conpl et eness

The GL Specification describes a "conplete" set of m pnmap i nage arrays
as array levels 0 through p, where p is a well defined function of the
di nensions of the level 0 image. This extension nodifies the notion
of conpl eteness: instead of requiring that all arrays 0 through p

neet the requirenents, only arrays 0 and arrays BASE LEVEL through
MAX _LEVEL (or p, whichever is smaller) nust nmeet these requirenents.
The specification of BASE LEVEL was descri bed above. MAX LEVEL is
specified by calling TexParaneteri, TexPareneterf, TexParameteriv, or
TexParameterfv with <target> set to TEXTURE_ 1D, TEXTURE 2D, or
TEXTURE 3D _EXT, <pnanme> set to TEXTURE MAX LEVEL _SGE S, and <paranp set
to (or <parans> pointing to) the desired value. The error

I NVALI D VALUE is generated if the specified MAX LEVEL is negati ve.

If MAX LEVEL is smaller than BASE LEVEL, or if BASE LEVEL is greater
than p, the set of arrays is inconplete.

Array Sel ection

Magni fication and non-mni pmapped ninification are always performnmed
using only the BASE LEVEL inmge array. |If the minification filter
is one that requires nipmappi ng, one or two array |levels are

sel ected using the equations in the table below, and the LOD val ue
is clanmped to a maxi mum val ue that insures that no array beyond

250

NVIDIA OpenGL Extension Specifications SGIS_texture_lod

the limts specified by MAX LEVEL and p is accessed.

Mnification Filter Maxi mum LCD Array level (s)
NEAREST_M PNMAP_NEAREST M + 0. 4999 floor(B + 0.5)
LI NEAR_M PMAP_NEAREST M + 0. 4999 floor(B + 0.5)
NEAREST M PMAP_LI NEAR M floor(B), floor(B)+1
LI NEAR_M PMAP_LI NEAR M floor(B), floor(B)+1
wher e:

M = m n(MAX_LEVEL, p) - BASE LEVEL

B BASE LEVEL + LOD

For NEAREST_M PMAP_NEAREST and LI NEAR_M PMAP_NEAREST t he specified
image array is filtered according to the rules for NEAREST or

LI NEAR respectively. For NEAREST_M PMAP_LI NEAR and

LI NEAR_M PMAP_LI NEAR bot h sel ected arrays are filtered according to
the rules for NEAREST or LINEAR, respectively. The resulting val ues
are then bl ended as described in the M pnmapping section of the
Opend@. specification

Additional Filters

Sharpen filters (described in S@ S sharpen_texture) operate on array

| evel s BASE LEVEL and BASE LEVEL+1. |If the mninmum of MAX LEVEL and p
is not greater than BASE_LEVEL, then sharpen texture reverts to a

LI NEAR magnification filter. Detail filters (described in

SA S detail _texture) operate only when BASE LEVEL is zero.

Texture Capacity

In Section 3.8 the OpenGL specification states:

"In order to allow the client to neaningfully query the maxi num
i mage array sizes that are supported, an inplenentation nmust not
all ow an image array of level one or greater to be created if a
‘conplete’ set of inmmge arrays consistent with the requested
array could not be supported.”

G ven this extension’s redefinition of conpleteness, the above
par agr aph should be rewitten to indicate that all levels of the
‘conpl ete’ set of arrays nust be supportable. E. g.

"In order to allow the client to neaningfully query the maxi num
i mage array sizes that are supported, an inplenentation nmust not
all ow an image array of level one or greater to be created if a
‘conplete’ set of inmmge arrays (all levels 0 through p) consistent
with the requested array could not be supported.™

Additions to Chapter 4 of the 1.0 Specification (Per-Fragment Operations
and the Frane Buffer)

None

251

SGIS_texture_lod NVIDIA OpenGL Extension Specifications

Additions to Chapter 5 of the 1.0 Specification (Special Functions)
None
Additions to Chapter 6 of the 1.0 Specification (State and State Requests)
None
Additions to the G.X Specification
None
Dependenci es on EXT_texture
EXT texture is required.
Dependenci es on EXT_texture3D

I f EXT _texture3D is not supported, references to 3D texture mapping and
to TEXTURE 3D EXT in this docunent are invalid and shoul d be ignored.

Dependenci es on EXT_texture_object

I f EXT_texture_object is inplenented, the state val ues nanmed

TEXTURE_M N_LOD SG S
TEXTURE_MAX_LOD SG S
TEXTURE_BASE_LEVEL_SG S
TEXTURE_MAX_LEVEL_SG S

are added to the state vector of each texture object. Wien an attribute
set that includes texture information is popped, the bindings and
enables are first restored to their pushed val ues, then the bound
textures have their LOD and LEVEL paranmeters restored to their pushed
val ues.

Dependenci es on SA S detail _texture

If SG@S detail _texture is not supported, references to detail texture
mapping in this docunment are invalid and should be ignored.

Dependenci es on SA S sharpen_texture

If SG@ S sharpen_texture is not supported, references to sharpen texture
mapping in this docunent are invalid and should be ignored.

Errors

I NVALI D VALUE is generated if an attenpt is nmade to set
TEXTURE_BASE _LEVEL_SGA S or TEXTURE_MAX LEVEL_SA S to a negative val ue.

252

NVIDIA OpenGL Extension Specifications

New St at e

CGet Val ue

TEXTURE_M N LOD SA S
TEXTURE_MAX_LOD SG S
TEXTURE _BASE LEVEL _SA S
TEXTURE_MAX LEVEL_SG S

Cet TexPar aneterfv
Cet TexPar aneterfv
Cet TexPar aneteri v
Cet TexPar aneteriv

New | npl enent ati on Dependent State

None

253

Initial
Type Val ue

SGIS_texture_lod

Attrib

texture
texture
texture
texture

WGL_EXT_swap_control NVIDIA OpenGL Extension Specifications

Nanme

EXT_swap_control
Nanme Strings

WGEL EXT _swap_contr ol
Ver si on

Date: 1/27/1999 Revision: 1.3
Nurber

172
Dependenci es

WGL EXT extensions_string is required.
Overvi ew

This extension allows an application to specify a mninum periodicity
of color buffer swaps, neasured in video frane peri ods.

New Procedures and Functions
BOOL wgl Swapl nt erval EXT(int interval)
i nt wgl Get Swapl nt er val EXT(voi d)

New Tokens
None

Additions to Chapter 2 of the 1.2 G Specification (OpenG. Operation)
None

Additions to Chapter 3 of the 1.2 G Specification (Rasterization)
None

Additions to Chapter 4 of the 1.2 G. Specification (Per-Fragment Operations
and the Franebuffer)

None
Additions to Chapter 5 of the 1.2 G. Specification (Special Functions)
None
Additions to Chapter 6 of the 1.2 GL Specification (State and State Requests)

None

254

NVIDIA OpenGL Extension Specifications WGL_EXT_swap_control

Additions to the WGL Specification

wgl Swapl nt er val EXT specifies the m ni num nunber of video franme periods
per buffer swap for the w ndow associated with the current context.
The interval takes effect when SwapBuffers or wgl SwapLayer Buffer

is first called subsequent to the wgl Swapl nterval EXT call.

The paraneter 'interval’ specifies the nminimum nunber of video franes
that are displayed before a buffer swap will occur.

A video frane period is the tinme required by the nonitor to display a
full franme of video data. 1In the case of an interlaced nonitor,

this is typically the time required to display both the even and odd
fields of a frame of video data. An interval set to a value of 2
neans that the color buffers will be swapped at nost every other video
frane.

If "interval’ is set to a value of 0, buffer swaps are not synchron-
ized to a video frame. The "interval’ value is silently clanped to
the maxi mum i npl enent at i on- dependent val ue supported before being
st ored.
The swap interval is not part of the render context state. It cannot
be pushed or popped. The current swap interval for the w ndow
associated with the current context can be obtained by calling
wgl Get Swapl nterval EXT. The default swap interval is 1.
Because there is no way to extend wgl, this call is defined in the ICD
and can be called by obtaining the address with wgl Get ProcAddress.
Because this is not a GL extension, it is not included in the
GL_EXTENSI ONS string.

Errors
If the function succeeds, the return value is TRUE. If the function
fails, the return value is FALSE. To get extended error information,
call GetlLastError.

ERROR_| NVALI D_DATA The "interval’ paraneter is negative.

New St at e
None

New | npl enent ati on Dependent State

None

255

	NVIDIA OpenGL Extension Specifications
	Legal Notice
	Table of Contents
	Table of NVIDIA OpenGL Extension Support
	ARB_multitexture
	ARB_texture_compression
	ARB_transpose_matrix
	EXT_abgr
	EXT_bgra
	EXT_blend_color
	EXT_blend_minmax
	EXT_blend_subtract
	EXT_compiled_vertex_array
	EXT_fog_coord
	EXT_packed_pixels
	EXT_paletted_texture
	EXT_point_parameters
	EXT_rescale_normal
	EXT_secondary_color
	EXT_separate_specular_color
	EXT_shared_texture_palette
	EXT_stencil_wrap
	EXT_texture_compression_s3tc
	EXT_texture_cube_map
	EXT_texture_edge_clamp
	EXT_texture_env_add
	EXT_texture_env_combine
	EXT_texture_filter_anisotropic
	EXT_texture_lod_bias
	EXT_texture_object
	EXT_vertex_array
	EXT_vertex_weighting
	NV_blend_square
	NV_fence
	NV_fog_distance
	NV_light_max_exponent
	NV_register_combiners
	NV_texgen_emboss
	NV_texgen_reflection
	NV_texture_env_combine4
	NV_vertex_array_range
	SGIS_texture_lod
	WGL_EXT_swap_control

