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Abstract 
 

The aim of this project is to create a 3D shader that is able to render a computer 

generated scene. More specifically, a scene which is visually similar to the backdrop 

created in the 1967 film Jungle Book. I will use a nurbs surface as the base that the 

painterly shader will act upon. The surface itself will play an important role when 

trying to produce a similar size and shape to the Jungle Book backdrop. The shader 

alone will attempt to recreate the exact characteristics of a hand painted backdrop. 

Overall I wish to compose a shader that will have well defined but simple 

parameters, to allow the user to produce a complex painted scene. 
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CHAPTER I 
 

INTRODUCTION 
 

Example Cartoon Backdrops –  

 

 
 

 

 
 



 

 

Characteristics to recreate 
 

Backdrops are subtle, hand painted backgrounds and therefore the images created are 

2d. The perception of depth, light, tone, colour and texture is all produced by the 

artists brush. There are a few issues that have to be considered when moving from a 

2d to a 3d medium and these are as follows: 

 

Perspective – Depth has to be created by the artist in a 2d medium, however with a 

3d package perspective and depth are handled automatically.  The only consideration 

is the conversion of a 2d image into a 3d modelled scene. 

 

Colour and Texture – This will be the main focus for my shader itself. Reproducing 

similar hues and colour palettes will be the user’s job to ensure the correctness with 

each scene. The texture or surface of the objects should be automated mostly by the 

shader. 

 

Light and Tone – In the original backdrops the artist created the illusion of light and 

shadows through colour. These are handled in the 3d package so a further amendment 

must be made to connect the effects of lights on the shader, so it compliments with 

the original style of the painting.  

 

No sharp defined edges – When painting a background, due to the nature of paint 

and to particular styles of painting, an image is built up through many layers of 

strokes. This leads to an image without any sharp or defined edges and the illusion of 

these edges can only be achieved through smaller finer brush strokes. 

 

Image Detail – A painted image generally is of less detail than perhaps a photograph 

would be. The level of detail of a painting is normally determined by the size of the 

strokes. A painting can have varying areas of detail; one area may use fine small 

strokes meaning that there is a high level of detail, whereas areas with larger 

brushstrokes tend to be areas of low detail. 

 

Artefacts – Imperfections within paintings are what give many images its character; 

furthermore recreating some artefacts should aid the recreation process. Too many 

artefacts may hinder the overall effect, and there must be coherence between each 

frame of an animation so artefacts don’t look like random noise. 



 

 

CHAPTER II - RESEARCH 
 

Background Work 
 

During the early years of computer graphics development there was a want to strive 

for photo-realistic images. A great deal of research was done into the way light 

bounces off of objects, how different materials react and the ways that realistic 

objects looked. Since the advancement of photorealistic renderings we have come to 

the point where it becomes near impossible to distinguish a realistic photo from a 

computer generated image; a new sub-genre of computer generated images was 

formed, non-photorealistic rendering (NPR). Renders that strived against realistic 

images to ones that we’re freer, more artistic.  

 

Direct / Indirect Rendering 
 

Direct Rendering is where everything is handled within the 3d renderer. So all 

calculations are done, and the final image is the composite painterly rendering. For 

indirect Renderings, the 3d package renders out control images, which another 

normally 2d software uses the control images to calculate how the image should be 

‘painted’. Due to what outcomes I wish to achieve from the project I will utilize a 

direct method, by creating a RenderMan shader. This will aim to put a lot of the work 

upon the shader and not the user to control the render. 

 

Painterly Rendering for Animation by Barbara J. Meier – In 1992 Meier developed 

a technique for painterly rendering. It describes that particles populate a surface, via a 

particle placer program. Control Images are rendered out from the geometry to 

describe such things as zdepth, colour, orientation. Using these control images and 

the particle data, a painterly renderer rendered a brush stroke texture at each of the 

particles of relevant size colour and orientation. The resulting image is many layered 

brush textures that resemble a hand painted canvas. 

 

Deep Canvas – Deep Canvas was a technique developed firstly for the 1999 film 

Tarzan. In which, an artists paints an image of a particular frame of animation and the 

system recorded the stroke colour length, pressure, position etc. The computer will 

then repaint the image onto the 3d surfaces. Repeating this process until all of the 3d 

objects have been textured. 

 

Spatio-temporal coherence - Temporal Coherence is important for animations, and 

should be maintained on a frame by frame basis.  

 

‘Frame by frame coherence is achieved when the media 

moves with the object. Without tracking, objects appear to be moving behind the 

media, this is known as the ”shower door” problem.’ [KAUSHIK PAL] 

 

Entropy - Perfect coherence is often not wanted for NPR, because it is the slight 

imperfections that give hand crafted media their characteristics. So, recreating these 

faults will aid in the reconstruction of a painterly shader. Controlling these blemishes 

will be of importance, because if there are too many imperfections that occur 

randomly on a frame by frame basis, it may just look like distracting noise.



 

 

CHAPTER III – Writing Shaders 
 

How to Approach writing shaders: 
 

‘Simple shaders comprise at least 90% of the shaders that get written.’ [ Writing 

Renderman Shaders, SIGGRAPH 92, Course 21 ] 

 

The majority of shaders are very simple shaders that comprise of simple techniques. 

Complex shaders are usually composed of a set of simple techniques. ‘Writing 

Renderman Shaders’ describes a very good system for creating complex shaders, they 

use the term “Divide and Conquer”. The method details that writing a shader should 

consist of 4 phases: 

 

• Pattern Generation – Creating a repeating or stochastic pattern that resembles 

a single characteristic of a shader. 

• Layers – Many interesting patterns cannot be described by a single function, 

but are composed of subtle patterns on top of larger patterns. 

• Illumination Model – Many shaders can use a simple illumination model like 

standard ones describes in plastic.sl, but for some more complex shaders that 

may use a patterned illumination model or for surfaces that might not reflect 

like a plastic surface will. 

• Compositing – Some shaders have layers of totally different characteristics, 

illumination calculations upon each layer may be totally different. Each layer 

has to be composed together using the standard compositing equations. 

 

To start writing a shader there are a few things that should be achieved first: 

 

• Make sure you have good geometry 

• Know what look you are going for 

• Start with a simple shader that is closest to the look you are going for 

• Work on aspects of the shader one layer at a time. Mimicking the way a real 

object achieves its characteristics. 

 

Some important things to look out for when creating your own shader: 

 

• Slow Rendering Times – This means something in your code may be too 

complex, resulting in an inefficient and unusable shader. 

• Aliased Images – Aliasing will create artefacts in your image and will affect 

image coherence. 

• Wasted Effort – Don’t spend a lot of time on something that will only 

marginally affect the end result. 

 

 

The first step to building a shader is to take the real world example of the effect you 

are going for and break it down into its characteristics. For example; a football has 

colour, bumps, dirt and possible decals. Each of these characteristics should be 

worked on one at a time until they match the real world model then composite each of 

the characteristics together. 

 



 

 

Simple Shaders 
 

Learning simple shaders help to develop the techniques involved to create more 

complex shaders. The following will be some techniques that I researched in the hope 

to aid the final composition of my painterly shader.  The first and simplest shader is 

the constant shader. 

 

 

 
 

 

The surface uses four ‘Standard Geometric Primitive Variables’ [Renderman Specification 

3.2], that describe how the surface of an object will look. 

 

Oi and Ci are the variables that define the final surface opacity and final surface 

colour, respectively. Os and Cs, define the surface opacity and surface colour which 

has been defined in the RIB file that uses the shader. The output of this shader will be 

a constant color that was defined by the RIB file. See figure: 3.2. 

 

 
 

Creating a repeating pattern is an important technique used in many shaders to get 

something to appear many times over a surface. 

 

Figure 3.2 : constant shader 

surface constant ( )  

{ 

 Oi = Os; 

 Ci = Oi * Cs; 

} 

 
Figure 3.1 :  



 

 

 

 
 

 

Splitting the shader into clear sections is a good way to keep a structure of a shader 

without getting lost. There are 3 main areas involved here:  

 

• Initialize Variables – Create any variables, keeping them all in one place is a 

good way to understand what each variable does and what it contains. 

• Texturing – Everything within this section is used to control the colour and 

opacity of a surface point. 

• Shading – Takes everything computated from the shader and applies them to 

the output variables, generally colour and opacity for surface shaders. 

 

To generate the tiled pattern, taking the texture coordinates s and t
1
 they are multipled 

by how many tiles we want along each edge and round down the number to a whole. 

So that for every point it is inside a certain tile i.e s=0.1, t=0.55, grid_size=5; 

 

sTile = floor( 0.1 * 5) = floor(0.5) = 0.0; 

tTile = floor( 0.55 * 5) = floor(2.75) = 2.0; 

 

So, we know that texture_coordinate(0.1,0.55) is in tile_coordinate(0,2). We can then 

create a colour for each tile by using a pseudorandom function cellnoise()
2
. Finally 

we put the randomly generated colour into our output variable Ci. 

 

                                                
1
 s and t range from 0 to 1 and specify the position on a texture the current sample 

point is at. 
2
 cellnoise() returns a value which is a pseuodrandom function of its arguments. Its return 

value is uniformly distributed between 0 and 1 
 

Figure 3.3 : tiles.sl – create a tiled pattern 

surface tiles ( ) 

{ 

 /* Initialize Variables */ 

 color Ct; 

 float grid_size = 5; /* Number of tiles */ 

  

 float sTile=floor(s*grid_size); /* vertical tile coordinate  */ 

 float tTile=floor(t*grid_size); /* horizontal tile coordinate */ 

  

 /* Texturing */ 

 Ct = color cellnoise(sTile,tTile); /* returns a random color per tile */ 

   

 /* Shading */ 

 Oi=Os; 

 Ci = Oi * Ct; 

} 



 

 

 

 

 
 

Once different patterns have been made, to produce the final shader the layers have to 

be composed together.  

 

Figure 3.4: tiles shader 



 

 

 

 
 

 

Just like splitting each section into group it is a good idea to sub-split those sections 

into logical areas, in this case; separating each layer. In Figure 3.5 Layer 0 describes 

the background colour by first setting the color variable Ct to Cs. Layer 1 describes 

colouring a vertical line in the center of the texture. Determining whether the given 

sample point is close enough to the center determines how the compositing equation 

works. Using the mix()
3
 function it chooses whether the background colour should be 

replaced with the new layer colour, indicating that it is within the line or left as it is, 

denoting that it is outside the line. This same process is repeated for every layer until 

the final chosen colour is plugged into Ci. 

 

                                                
3 Mix(color1,color2,value): blends between the given input colours by using the input value. 

Figure 3.5 : layers.sl – layering patterns 

surface layers ( ) 

{ 

/* Initialize Useful Variables */ 

 color Ct; 

 color red = color "rgb" (1,0,0); 

 color green = color "rgb" (0,1,0); 

 float dist; float inLine; 

  

/* Texturing */ 

 /* Layer 0 */ 

 Ct = Cs;   /* Background Color */ 

  

 /* Layer 1 */ 

 dist=abs(s-0.5);  /* distance from vertical center */ 

 inLine = 1-step(0.1,dist);  

 Ct = mix(Ct, red, inLine); 

  

 /* Layer 2 */ 

 dist=abs(t-0.5);  /* distance from horizontal center */ 

 inLine = 1-step(0.1,dist);  

 Ct = mix(Ct, green, inLine); 

/* Shading */   

 Oi=Os; 

 Ci = Oi * Ct; 

} 



 

 

 
 

 
 

 

A really important feature of creating shaders is being able to add stochastic 

adjustments to calculations. This can be achieved by using the function noise()
4
. 

Utilising noise can be a really powerful feature to creating realistic, more natural 

shaders. 

 

 

 

 
 

 

Primarily the use of noise may not be to produce an image much like figure 3.8, but 

to use the values return by the function to control other aspects of a shader, for 

example size of displacement in a simple brownian displacement shader, generates a 

surface that is very similar to many varieties of fruit. Noise effectively is used to dirty 

up a shader to avoid it looking too pristine, too perfect and has a little more realism. 

                                                
4 noise() returns a value which is a pseudo random function of its arguments; 

Figure 3.7 : brownian.sl – layered noise shader 

surface brownian ( ) 

{ 

 /* Initialize Useful Variables */ 

 color Ct; 

 float i; float mag=0; float frequency=1; 

  

 /* Texturing */ 

 for(i=0;i<layers;i+=1) { 

  mag += (float noise(P * frequency) - 0.5) * 2 / frequency; 

  frequency *= 2.1; 

 } 

 Ct = mag+0.5; 

   

 /* Shading */ 

 Oi=Os; 

 Ci = Oi * Ct; 

} 

Figure 3.6: layers shader 



 

 

 
 

 
 

 

To create shader that can be driven by user input, one of the strongest ways to 

accomplish this is with a texture map. Allowing a user to connect an image to the 

shader. The connected image can be used in a variety of ways; one of the obvious is 

to drive the colour of the shader, as shown in figure 3.10. 

 

 

 
  

 

Figure 3.9 shows a shader argument ‘string mapname’ which can be defined by a 

calling RIB file. This is used in the code to determine if a calling RIB file has set a 

texture to look up. If it has, it will lookup the colour in the file at the same texture 

location of the current sample point (s and t). Otherwise, it will just use the input 

colour. 

Figure 3.9 : texmap.sl – connect a texture map to surface color 

surface texmap ( string mapname = "";) 

{ 

 /* Initialize Useful Variables */ 

 color Ct; 

 

 /* Texturing */ 

 

 if( mapname != "" )  

  { Ct = color texture(mapname);}  

 else  

  { Ct = Cs; } 

   

 /* Shading */ 

 Oi = Os; 

 Ci = Oi * Ct; 

} 

Figure 3.8: brownian.sl - 2d noise shader 



 

 

 

 
 

For a painterly renderer, there needs to be some way to create the look of different 

brush strokes. A renderman function is available that lets the shader find how far a 

point is from an arbitrary line of 2 points, which can be used to determine a position 

that a stroke has been made. The function is called ptlined()
5
. 

 

 

 
 

                                                
5
 float ptlined ( point Q, P1, P2 ) 

Returns the minimum perpendicular distance between the point Q and the line segment 
that passes from the point P0 to the point P1 (not the infinite line which passes 
through P0 and P1). 

Figure 3.11 : arbitrary_line.sl – draw an arbitrary line on a texture 

surface arbitrary_line () 

{ 

 /* Initialize Useful Variables */ 

 color Ct; 

 color blue=color "rgb" (0,0,1); 

 float edge_threshold = 0.025; /* edge threshold to interpolate between */ 

 point start=point (0.1,0.3,0);  

 point end=point (0.7,0.7,0); 

 point pos=point(s,t,0); 

  

 /* Texturing */ 

 Ct = Cs; 

 float dist = ptlined(start,end,pos); /* distance from center of line */ 

 float inLine = 1 - smoothstep(0.1-edge_threshold,0.1+edge_threshold,dist);  

 Ct = mix(Ct,blue,inLine); 

   

 /* Shading */ 

 Oi=Os; 

 Ci = Oi * Ct; 

} 

Figure 3.10: texmap.sl – user defined texture map 



 

 

The whole code is very similar to the patterns made by Figure 3.5 [layer.sl], but it 

uses a function ptlined() to determine the distance and not the center of the texture. 

The resulting image Figure 3.12 shows a red line placed at a set location, this is the 

simplest idea behind creating different kinds of brush strokes. Adding to this shader 

could be done to affect the brush width along the line and creating some stochastic 

effects to make it appear more realistic. There is another important function involved 

here and that is smoothstep()
6
. It is used to interpolate between colours. This is very 

important for a problem known as aliasing. When objects are viewed far away, fine 

detail of the shader becomes too small to be properly represented on screen as a result 

the renderer may choose an incorrect pixel color. Anti-aliasing solutions are not a 

simple thing to manage and in some situations the perfect anti-alias solution is 

inefficient for a shader. 

 

 

 
 

                                                
6
 smoothstep(min, max, value) - returns 0 if value < min, 1 if value > max, and performs a 

smooth Hermite interpolation between 0 and 1 in the interval min to max. 

Figure 3.12: arbitrary_line.sl – an arbitrary line 



 

 

CHAPTER IV – Painterly Shader 
 

Basic Approach 

 

I have determined different characteristics that my shader should have: 

 

• A painting has varying layers of paint 

• Lower layers have less detail 

• Lower layers use fewer colors 

• Higher layers use smaller finer brush strokes 

• Each brush stroke uses a single tone of colour 

• Brush strokes do not have sharp edges 

• Strokes can be opaque or stippled with opacity in places. 

 

My shader should include a function parameter to the texture map that the user can 

input. This map will control the base paint colour of the brush strokes. The user will 

create a map that will colour an object, it can be as detailed or sparse as required, 

other parameters of the shader will be able to fine tune how the texture map finally 

affects the look.  

 

Light colour and shadows will be taken into consideration to determine how the brush 

stroke colour will be lightened or darkened when painted on the surface. 

 



 

 

Code Snippets 

 

Shader Parameters: 

 

• float Ka – Ambient Contribution 

• float Kd – Diffuse Contribution 

• float Ks – Specular Contribution 

• float roughness – roughness of the specular function 

• float impressionist – if not 0.0 will use complementary colours for shadows 

• float grid_size – the last size of the brush stroke grid 

• float stroke_length – how long each stroke is 

• float start_width – the starting width of the brush stroke 

• float end_width – the ending width of the brush stroke 

• float stipple_frequency – how much noise applied to a strokes line width 

• string base_color_map – string to the user’s control colour map 

• color underpaint – colour of the background below the paint strokes 

• float color_variation – how much colour variation occurs from the control 

colour map 

   

 

 
 

Figure 4.1 shows the code for finding the value of T that any point pos is along the 

line AB. This is function is required so that I will be able to linearly interpolate 

between the starting stroke width and end stroke width. I was able to use simple 

trigonometry to work t by finding then length of vector AP when projected onto 

vector AB, and finding the ratio between these two vectors. 

 

Figure 4.1: find_t – finds the ratio of a point projected onto an arbitrary line AB 

float find_t(point A; point B; point pos) 

{ 

 vector AB = B - A;     // line to compare 

 vector AP = pos - A;   // vector from start to pos 

 float angle = AB . AP;   // angle between vectors 

  

 vector APonAB = AP * cos(angle); // vector of AP projected onto AB; 

  

 float T = length(APonAB) / length(AB); 

  

 return T; 

} 



 

 

 

 
 

One of my functions I made was complementary_color(). Its initial purpose was to 

reflect an impressionistic painting look by using the complementary colour as the 

shadow colour of an object, which would hopefully create an image that resembled 

more of a painted look. Observing the effect of how colour values change when 

changing the hue led me to devise how to work out a colours complementary colour. 

 

 

 
 

 

 

 
 

Figures 4.3 and 4.4 are simple function that were used to modify the range that the 

renderman functions noise() and cellnoise() return. The function on their own return a 

value that is normally distributed around 0 to 1, therefore it has an average of 0.5. But 

Figure 4.4: scellnoise – modifies the renderman cellnoise function to the range -1< noise < 1. 

float scellnoise(float x; float y) 

{ 

 return (2 * cellnoise((x),(y)) - 1); 

} 

 

Figure 4.3: snoise – modifies the renderman noise function to the range -1< noise < 1. 

float snoise(float x) 

{  

 return (2*noise((x)) - 1); 

} 

 

Figure 4.2: complementary_color – returns the complemntary color 

color complementary_color( color inColor ) 

{ 

  

 /* extract color space into individual elements */ 

 float r = comp( inColor, 0 ); 

 float g = comp( inColor, 1 ); 

 float b = comp( inColor, 2 ); 

  

 /* calculate values  */ 

 float largest  = r > g ? (r > b ? r : b ) : (g > b ? g : b ); 

 float smallest = r < g ? (r < b ? r : b ) : (g < b ? g : b ); 

 float total = largest + smallest; 

  

 /* find complementatry hue */ 

 r = total - r; 

 g = total - g; 

 b = total - b; 

  

 /* return the complementary color */ 

    return color "rgb" ( r, g, b ); 

} 



 

 

modifying these values to the range -1.0 to +1.0 meant I could use these as stochastic 

modifiers that would normally distribute around the same value. 

 

 

 
 

cell_s and cell_t describe the index  of which cell the current sample point is residing 

in. 

 

ss and tt are the adjusted s and t parameters for the new cell. This mean that the 

texture surface ranges from 0 to 1 using s,t and each cell within this texture surface 

ranges from 0 to 1 using ss and tt. 

 

 

 
 

To begin our brush stroke we have to place it within one of the cells. Placing the start 

of our arbitrary brush stroke in the center of the tile means that we can rotate it 

without any fear of it clipping outside of the cell. We rotate the stroke by a stochastic 

amount that I dependant upon the cell index. This means that on a frame by frame 

basis the stroke directions should look the same on the surface, no matter in which 

direction the camera is look at it. This help keeps temporal coherence within an 

animation. 

 

 

 
 

One thing to notice about painting a picture is that, stroke widths vary as an artist 

places strokes upon his canvas. It is never uniformly distributed, no matter how 

careful; the bumpiness of the canvas or pressure applied from the artist or even the 

amount of paint left on the brush will have an affect on stroke width. Figure 4.7 tries 

to recreate this effect by adding some random noise along the width of each stroke.  

Figure 4.7: adjusting line width 

ratio_t = find_t( start, end, pos );  

line_width = start_width * ratio_t + ( 1 - ratio_t ) * end_width;  

line_width += (snoise( ratio_t * stipple_frequency )) * (line_width/4);  

Figure 4.6: cell index and cell coordinates 

point start = point (0.5, (0.5 - stroke_length/2), 0); 

vector up = vector(0.0,stroke_length,0.0); 

point end = start + up; 

 

start = rotate(start, cellnoise(cell_s,cell_t)*i * 2 * PI , point( 0.5,0.5,-1 ), point( 0.5,0.5,1 ));  

end = rotate(end,  cellnoise(cell_s,cell_t)*i * 2 * PI , point( 0.5,0.5,-1 ), point( 0.5,0.5,1 )); 

point pos=point (ss,tt,0); 

Figure 4.5: cell coordinates and cell texture coordinates 

float cell_s = s * i; 

float cell_t = t * i; 

 

float ss = mod(cell_s, 1); 

float tt = mod(cell_t, 1); 



 

 

The noise of stroke width is dependant upon the shader parameters and the distance 

from the start of the stroke. 

 

 

 

 
 

The next step is to choose the colour of the brush stroke. If the user has supplied a 

base_color_map then it will lookup the colour that is in the center of the current cell 

index. Otherwise, it will use the colour as defined in the RIB file. Finally some 

variation to the brush colour is applied to dirty up the shader a little as so it isn’t so 

perfect. By default the colour variation is set to 0.0, so it will use the exact lookup 

colour unless explicitly specified. 

 

 

 
 

 

Once the colour of the stroke has been determined, this is altered by calculating how 

much light falls upon the surface. The equation is a simple plastic illumination model, 

which gets multiplied by the stroke colour to determine the final stroke colour. If the 

user has input an impressionist parameter then it will take the intensity of the shadow 

colour and multiply the current stroke colour by its complementary colour producing 

an impressionistic painting. 

 

Figure 4.8: determine shadow colour 

color shadow_intensity = (Ka*ambient()+Kd*diffuse(Nf)) + Ks*specular(Nf,V,roughness); 

float intensity = (comp(shadow_intensity,0) + comp(shadow_intensity,1) + 

comp(shadow_intensity,2)) / 3.0; 

 

color complementary = complementary_color( stroke_color ); 

 

if( impressionist != 0.0 ) { 

stroke_color = intensity*stroke_color + (1 - intensity)*complementary;  

} else { 

stroke_color = stroke_color*shadow_intensity;  

} 

Figure 4.8: picking stroke colour 

color stroke_color; 

if( base_color_map != "" ) { 

stroke_color = color texture( base_color_map, (floor(s*i)+0.5)/i  , (floor((1-

t)*i)+0.5)/i  ); 

} else { 

stroke_color = Cs;  

} 

 

stroke_color += scellnoise(i*s,i*t)* color_variation; 



 

 

 

 
 

The last thing that has to be calculated for the current sample point is whether or not 

it lies inside or outside the current brush stroke. This is achieved by finding the 

distance of the sample point from the centre of the brush stroke line. This distance is 

compared to the line width of the stroke (plus an edge threshold for anti aliasing 

purposes), to see if it is further away in which case the equation returns 0.0, or 1.0 if it 

lies within the stroke. This value is used to mix the current brush colour with what 

has already been previous painted onto the canvas or rendered image. 

Figure 4.9: check current sample to see if it is or isn’t inside the brush stroke. 

dist = ptlined(start,end,pos); 

 

float inside_stroke=1-smoothstep(line_width/2-edge_threshold,line_width/2+edge_threshold,dist); 

 

Ct = mix(Ct,stroke_color,inside_stroke); 



 

 

RESULTS 
 

 
 

The Rendered images here show how the painterly shader looks on a flat surface and 

a sphere primitive. The brush strokes can be seen up close, but from a distance the 

stroke seem to merge into a regular picture, which is a normal effect form some types 

of painting. Stroke colour is affect by the light and produces a nice shadow look to 

the render. 

 

 
 

This render utilizes the impressionist function to attempt a more painterly shadow. I 

am not convinced that this type of shadow shows up enough that it is actually a 

shadow and not just a change in stroke colour.



 

 

My Shader Code – painterly_shader.sl: 
 

float snoise(float x) 

{  

return (2*noise((x)) - 1); 

} 

 

float scellnoise(float x; float y) 

{ 

return (2 * cellnoise((x),(y)) - 1); 

} 

 

float find_t(point A; point B; point pos) 

{ 

vector AB = B - A; 

vector AP = pos - A; 

float angle = AB . AP; 

 

vector APonAB = AP * cos(angle); 

 

float T = length(APonAB) / length(AB); 

 

return T; 

} 

 

color complementary_color( color inColor ) 

{ 

float r = comp( inColor, 0 ); 

float g = comp( inColor, 1 ); 

float b = comp( inColor, 2 ); 

 

float largest  = r > g ? (r > b ? r : b ) : (g > b ? g : b ); 

float smallest = r < g ? (r < b ? r : b ) : (g < b ? g : b ); 

float total = largest + smallest; 

 

r = total - r; 

g = total - g; 

b = total - b; 

 

return color "rgb" ( r, g, b ); 

} 

 

surface layered_strokes (  

 float Ka = 1; 

 float Kd = 0.5; 

 float Ks = 0.5; 

 float roughness = 0.1; 

 float impressionist = 0.0; 

 float grid_size = 50; 

 float stroke_length = 0.6; 



 

 

 float start_width = 0.2; 

 float end_width = 0.2; 

 float stipple_frequency = 1; 

 string base_color_map = ""; 

 color underpaint = 1; 

 float color_variation = 0.0;) 

{ 

normal Nf=faceforward(normalize(N),I); 

vector V = normalize(-I); 

color Ct = underpaint; 

float edge_threshold = 0.025; 

float i; 

 

for(i=1;i<=grid_size;i+=1.0) { 

 

 float cell_s=s*i; 

 float cell_t=t*i; 

 

 float ss = mod(cell_s,1); 

 float tt = mod(cell_t,1); 

  

 point start=point (0.5, (0.5 - stroke_length/2), 0); 

 vector up = vector(0.0,stroke_length,0.0); 

 point end = start + up;   

  

 start = rotate(start, cellnoise(cell_s,cell_t)*i * 2 * PI , point( 0.5,0.5,-1 ), point( 

0.5,0.5,1 )); 

 end = rotate(end,  cellnoise(cell_s,cell_t)*i * 2 * PI , point( 0.5,0.5,-1 ), point( 

0.5,0.5,1 )); 

 point pos=point (ss,tt,0); 

 

 float line_width; 

  

 float ratio_t = find_t( start, end, pos ); 

 line_width = start_width * ratio_t + ( 1 - ratio_t ) * end_width; 

 line_width += (snoise( ratio_t * stipple_frequency )) * (line_width/4); 

  

  

 color stroke_color; 

 if( base_color_map != "" ) { 

  stroke_color = color texture( base_color_map, (floor(s*i)+0.5)/i  , 

(floor((1-t)*i)+0.5)/i  ); 

 } else { 

  stroke_color = color cellnoise(i*s,i*t); 

 } 

  

 stroke_color += scellnoise(i*s,i*t)* color_variation; 

  

 color shadow_intensity = (Ka*ambient()+Kd*diffuse(Nf)) + 

Ks*specular(Nf,V,roughness); 



 

 

 float intensity = (comp(shadow_intensity,0) + comp(shadow_intensity,1) + 

comp(shadow_intensity,2)) / 3.0; 

 color complementary = complementary_color( stroke_color ); 

  

 if( impressionist != 0.0 ) { 

  stroke_color = intensity*stroke_color + (1 - intensity)*complementary; 

 } else { 

  stroke_color = stroke_color*shadow_intensity; 

 } 

  

 float dist = ptlined(start,end,pos); 

 float inside_stroke = 1 - smoothstep(line_width/2-

edge_threshold,line_width/2+edge_threshold,dist); 

 

 Ct = mix(Ct,stroke_color,inside_stroke); 

 

} 

Oi = Os; 

Ci = Oi * Ct; 

}



 

 

CHAPTER V - Conclusion & Further Work 
 

It is hard to be able to evaluate the success of the project as unlike Photorealistic 

Renderings, NPR has no absolute goal. Photorealistic Rendering can be compared to 

real life counterparts and checked to see how close they match, whereas a painterly 

renderer can hardly be compared to a painting and checked to see if each brush stroke 

compares exactly. It is the artistic style that is to be recreated and art is subjective.  

 

The goal of this project was to recreate a shader that looked reminiscent of an old 

cartoon backdrop. I believe I have both successful in some areas but not successful in 

others. I have been able to produce a shader that does indeed produce a look as if it 

has been painted. It still may look too structured and not stochastic enough, and 

maybe still a bit too procedural, but the foundations of a good shader are set down.  

 

One area that I was not successful with is that I didn’t manage to produce a scene that 

would compare to a jungle book backdrop. Due to the complexity of such a scene, 

and the processing power/time required to render a single frame containing possibly 

20 or 30 instances of my shader, I was not able to produce a single render of such a 

scene. This is due to the fact that overcoming limitations in my shader and the 

techniques that I employed, many layers of brush strokes (50 for very detailed 

images) were painted onto each texture resulting in an exponentially long rendering 

time. This is fine for simple scenes involving a single sphere, which was used during 

the developmental stage of shader generation. 

 

My shader is not complete, and certainly not without flaws, but it does have some of 

the main principles within it for being able to create a painterly renderer. With extra 

work and care the shader will only but look more impressive. The following are 

possible direction of further work and improvement: 

 

• Stochastic Brush Placement - A more complete stochastic brush placement – 

each brush stroke is confined to it own cell index, if it wants to go beyond this 

boundary it becomes clipped and it is noticeably so. This nature relieves a 

heavy amount of work the shader has to do but I’m certain that a more 

accurate but less efficient method could be found. 

 

• Displaced Edges – Brush strokes are “painted” onto the 3d surfaces. This 

creates an effect much more like the deep canvas technique that was used for 

the 1999 film Tarzan. This means that the shader would not replicate a 

background too accurately because object edges are always sharper than 

would be expected from a hand-painted backdrop. But this is one of the 

limitations of a 3d shader. Meier’s technique, which takes 3d data and 

generate 2d images which are then used to create the final 2d painterly effect, 

is an indirect method and has the advantage that every frame could look like 

they have been hand painted. This direct method always retains its 3d look 

and feel. 

 

• Z-Depth Stroke Size – It would have been a nice idea to alter brush size 

based on if objects were in the foreground or background. Closer objects 

would require smaller brush strokes to obtain greater detail whereas objects 

that are further away, could use larger brush strokes. This idea was not 



 

 

considered in depth due to the fact temporal coherence between frames may 

have been affected. 

 

• Efficiency – Further development could and should go into making the image 

as efficient as possible, one possible solution to this is to create each layer 

with overlapping brush strokes, as a limitation of the current method clips 

strokes extend beyond its “grid space”. 
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